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GEF2AL LTOMMlIONP
This report contains a series or technical discussions and papers con-

jcerned with the theory of wave propagation in solids with sapcial applica-

tio to graud shock phenomena. It Is a summary which provides the theo-

I retical background to sooe of our investigations on these topics, initiated

in the early part of 1957, and which are still actively pursued at the

present.

The report deals with the two major subjects of interest namely, free

field effects and diffraction phenonena both, in regions where neither

thermodynamic effects nor very large displacements have significant iiflu-

once on the overall physical picture. This restriction eliminates the

crater and its imediate vicinity from the province of our investigations.

This means that effects outbide of the crater region, but cauacd by phen-

omena within this region are only crudely represented by our analytical

work. Numerical evaluations of these effects should preferably be started

with iLput data obtained from these close-in calculations. These resear.

I ches (conducted by Brode at The RAMD Corporation) were not concludel dur-

ing the present project, and for this reason the validity of sone of our

conclusions must be bracketed within suitable space and time intervals.

Attention must be paid to the relation of the mathematical model to

the expected physical behavior of the material. Our researches show that

|many of the significant quantities due to fundamental consideration are

not very sensitive to variations of physical models. For example, the P

wave, generated by a surface burst in an elastic solid, appears in an

oaly lightly changed forma and intensity in an elastic fluid, and it is
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found. again with a-3 1 modifications in a viscoelaotic medium. Similnrly

in grnular solids, the essential attenuation of particle velocities and

otrecoe is not too sensitive to quite large variations cf physicol para-

metors.

In the case of Rayleigh waves we were able to establish the region

byond which they do not contribute significantly to the free field stresoes,

even though the amplitude of these waves obtained by elastic xheory vithin

this region itself is larger than what the pysical properties of the

material can justify. ldhile these c tations furnish only upper bounds

of the quantities required, their implications are physically meaningful

and of practical significance.

The diffraction problcn has so far only been considered in the elastic

medium, and it has led to important conclusions regarding the amplificr-

tion of free field stresses around underground openings. These some effects

brought out some new results regarding the applicability of frequency-

amplitude (or shock) spectra: it is found that at high frequencies the

diffracted spectrlm is significantly different from that of the free

field spectrum.

The implications and the applicability of theoretical findings ar

discussed in thFn report and more detail is contained in some earlier

studies ((17], (18], and [191). We come to the cornclusion that within

the limitations outlined, the results of our theoretical work can be

applied with confidence to practical problems dealing with ground sioek

effects.

The above work was untlertaken to provide urgontly needed ansvers on

problems related to the vulnerability of underground otruotews: Some of

the earlier classified feasibIlity studieu ((18] and (191]9prepared under

pressure of deadlines, vere issued containing only numerical results, or
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educated gueuses, based, however, on rather extensive theoretical researches.

The purpose of the present report therefore is to supply in scne

detail the background and data on which our previous reconmendations Mre

based. It attempts to gather scce of the loose ends and to summarize

jour current knowledge gleaned from our own inveotirations and from the work
or others. The theoretical results are discussed in the report itself,

while some of the detailed derivations are in tho Appendices.

A considerable part of the information which is summarized here is

based on our earlier researches which have been published or arc to'be

published in the near future in technical journals(*) , but recent theore-

tical results which, at the present are not available in other form are

contained in Appendices C, D and E.

Sone of our current investigations which could not be includcd at the

present time, but which ill be reported in the near future are as follows:

jStatic and quasi-dynamic high pressure exr,, jxr-ital we, K

on granulAr media;

1Wire propagation in vieco-elastic media.

In ste of the rather extensive coverage of the various topics!
S hich ha-e been considered by us and many other reseercher-, there are a

great number of gaps in our knowledge, which have important implications

on the general problem of vulnerability of underground structures. The

I most significant which are in need of urgent solution, are as follows:

Failure mechanism and failure criteria of cavities in

I elastic media.

1Diffraction of stress waves 'n non-circular openings.

e(*) Tese are denoted by (*) in the list of References.



Evaluation of the effects of tunnel linings.

Three-dimensionrl w.ave propagation in granular media.

Diffraction of stress waves in granular media.

Rayleigh Wave attenuation due to non-linear and/or

plastic effects.

Experimental verifications and research.

While the above list is far frcm exhaustive, it is uncomfortably

long; past experience with similar topics leads us to suspect that studies

on these subjects may bring about surprising and possibly aggravatirn,

disicoveris, While we are vorkinZ at the present on some of these topics,

we are not as yet in a position to report significnt progress in these

areas.
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I FRE- FIE.D EFFTS

1. IMTOUXTION

The following contains a sm ry of availabl, theoretical results on

free-field effects due to (hypothetical) Megaton cxplonions on the surface

of semi-infinite media of various idealized propeties.

The ultimate purposes of the presca tation are conclusions for actual

media like rock or soil with complex properties difficult to analyze or

even to describe. The problem of rock-like media is approached by consider-

inZ a succession of materials having gradually more complex properties. In

this manner certain conclusions drawn for cases of simple properties can be

extrapolated for more omplex ones by qualitative reasoning. The writers

believe that estimates applicable in Judging realistic situations in rock

have been obtained in this manner by considering the succession: acoustic

inviscid fluid, linear elastic solid, ron-linear elastic colid.

As contribution to the problem of soils additional studies of wave

propagation in locking media have been made. Most of the work concerns

one-dimensional wave propagation, but the case of spherical waves as now

1 also been treated.

To have an understanding of the meuanin of the analytical results it

Iis necessary to use a realistic pressure time history in computing examples.

. Such a history is indicated in Fig.(l-l), which represents ' mputed values

of surface pressures for a 20MT surface burst (1]. It is pertinent that

the pressure at any time acts over a circular area of radius with constant

intensity except at the periphery, where a pressure spike appears. It will

I be found very importrnt that the velocity of increase of the redius of the

I circle, i.e. the velocity of the shock in air, at early tin*s is very large,

much larger than the seismic velocities In the ground. The shock velocity

!
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in air at 19 ms, e.g. is still V * 34O00 feet per second, and therefore

larger than the seismic velocities of any likely medium; however, at 290 ms

the velocity has decreased to V a 7)200 feet per second which is less then

the seismic velocity of some rocks.

For qualitative considerations it in of Interest to have Information

on the impulse I a fp dt of the surface pressure. Fig.(l-2)shovs I at

the center of the explosion as a function of the time to.

The following recurring symbols are adhered to in the body of the

r.Tort

r, R and z coordinates as in Fig.(2-1).

velocity of sound in fluid, velocity of shear
waves in linear elastic solid.

CP, cR velocity of dilatational and Rayleigh waves, respec-
tively, in linear elastic solid.

G, hp g modulus of rigidity, Lc"'s constants, respectively

Different symbols may be uced in the Appendices, as they are taken
from various sources.
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2. AL2 SFAC . Or' il'U3TIC ThVIWCI FLUID

loecffect of i prjosu-e p(r, t) on the sur'w- oi a half space can

be obtaincd for the case of an acoustic fluid from the solution for a

concentrated p- !nt load. rhe load ia s. unit step load in ime, of intensity

H(t). The solutions for the pressure can be vritten in closed form (21

cos 0 R C o2Li--' 2 ( - R~ - )(2-i.)
Uhere r, R, z and 6 are defined in Fig.(2-1).

p is the pressure in the fluid

0 if X<O0

H) i i is a symbol defining a unit step furction.
t. ifY > 0

e H - _!. is Dirac's Delta oinction

ix

Using the applied presiur. p(r, t) defined in Fig.(l)and c - 5000 feet

per second, Pigs .(2-2)to(2-h)give computed pressures for points r 0 0, and

r - 2000 feet at various depths.

a) Effects under Ground Zero, r . 0

Fgs.(2-4 (2-3)eonsider points at r_ 0, directly under the ienter of

the explosion. For the first 2.2 ms (Fia. 2) the given presoure. c.t

z = 0 and the compuLed ones tt 100 feet and 2000 feet depth are undistinguish.

able. For later timas, Pig.(<, differences occur, the deviations occurring

earlier at greater depth. It I significant that for a few milliseconds

(except for time delay) the pr( lire signal just under ground zero is

independent of th! dcpvh. WJ Is due to the fact that the pressure p(r, t)

spreads on the surface with -' "a large velocity that one could assume

simultaneous applica~ion of a 'oicform pressare over so-e radius r0 (Fig. 1-1)

* Note that in acoustic theory only first order terms are retained,
such that the equations beco= linear. This linearity permits the
use of superposition.
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shows that this pressure is at early times nearly uniform, the spikes

containing only a smil portion of the total load).

If a uniform prqssure p(t) is applied on the surface of a semi-infinite

fluid, the problem becomes one of one-dimensional wave propagution, and in

the acoustic case considered here, the pressure signal propagates then

without change. If a uniform pressure is applie, only over a circular

area, a point directly under the load receives a signal equal to the applied

pressure for a limited time, later the pressure drops as illustrated in

Fig.(2-4)for r 0 0, z = 500. The point where the pressure drops is defined

by the trrival time of a signal from the periphery of the loaded circle.

The situation in Figs. (2)and(3)is similar, but duo to the expansion of

the loaded area one cannot find an exact time t up to which one-dimensional

wave propagation applies; instead one can estimate a time t up to which

one-dimensiosd wave propagation should be a good approximation. The

time in which the approximation is valid will of course be a function of

the depth, z, (and of the seismic velocity and weapon size).

This rather elementary explanation wan presented in ouch detai.' because

the above qualitative reasoning is valid not only for the case of a linear

elastic solid, but also for complicated non-linear and/or non-elastic media.

Even in such eases pressure waves due to the blast pressures on the surface

must be, for a certain time, one-dimensional in nature, permitting manage-

able numerical solutions. These solutions should be good approximtions

for a definable range of time.

b) Effects in the hih-pressure (supersalsmic) range when z << r

As a typical exacple Equations (2-I) were used to obtain the pressure

at a typical point r a 2000 feet, z a 500 feet in the range of high pres-

sures. The result Is shown in Fig.(2-5)here the computed points are compared



with the surface pressure at the same radius, r - 2003 feat. It is seen

that the pressures at a depth of 500 feet differ only little fro those

on th-e zuritxca.

The -11 differences between the pressures on the surface and et a

depth z << r are due to the fact that the velocity V of the pressure wave

in air passing over the point is very much larger than the seismic velocity

e in the medium. The firt portion of the pressure eignal, say up to 50 ma

after arrival, ic due to the airpresourc paooing over the point, the very

first oignal originating from a point F, aec Flg. (5a). As a first approxi-

mation, the actual pressure on the surface might be replaced by a plane

pressure wave progressing with constant volccity V > e and without change

in shape of the nrems u wave. This problem has an elementary solution;

a wave on the surface p - f(t - x/V) produces an inclined plane wave in

the fluid, p(t - t/c), Fig.(2-6). The angle m depends on the ratio

V/c, and tho pressure signal pz at I#y point has the sam ahape as the

surface pressure, p. . f(t - ta), where ta is a time delay.

In the hith pressure range where the velocity of the shock :ront in

air V >> c, the pressure bolov the surface in the fluid car. therefore be

approximated by the surface pressure. By purely qualitative reacaonIn- onc

can conclude that this must be so for a very short time after arrival, and

if the depth z is very small. It is therefore import-nt to note that

Fig. (2-5) shw a that a reasonably, good approximation is obtained even at

a depth z - r/4 and for the entire tim range where the pressures are

substantial. It appears that z w r/4 is sufficiently small to satisfy the

'nriginal assumption z << r.

:t Is interesting to discuss the difference between this approximtori

and the computed points. At first arrival the actual pressure must be equzal



o the r air perr-e at th- poir~t F (Fi. ;z ) on tie aurface, V:ich

pn u-e im a liti.3 larcer tm tbv v % for i " XvJ feet. (Owe could

threfore iTr.=- the appre.o:ration for tha peal prorare b' unini the

preoquro hintory at F.) Subscquenty, for a lixvitad tinee, the zonaputed

prassures dun to the 1oa.o accorlinp to iG. (l-() are 12er than the surface

p-casure, similar to the situation for r a 0 in Fiv.( -3). Iolever, at

later tireax , t > 150 wa, th" co=puted precsuren e.cccd the approx.L-tc

ones ,omjwhat. Thi is caused by the hiea applied presures within th,,

cetitr circle r - 1000 feet, shortly after the e..ploaion. Waves Cenerated

from thia high pressure area arrive at this tire; the effect at the point

conaidered is however only small, because thcoe presc-n us are r eote and
C.

act only ov%, m relatively orp.1l area. A computation cirirninS that

the effect of rhe early high pressure in a typical case is not significant

wan ho-vovor required, because the relative magnitude o- the eff'ccts compared

depends on the rapidity of the decay of the applied air pressure. Y'or a

very much larger, or very much smaller weapon, the situation migdt be different.

The cinplifyina approxymation of assuming thit the shape of the our-

face pressure does not cnauge, and UmL "'ia prrc5CC2 -. *h r-nn

stant velocity, V, has been tested above at a point where the shock velocl..

V is several times lareer than the seismic velocity c. The same assumptton,

we viLU call it the "steady state solution", can be made with Good results

if the velocity V is appreciably smaller than c, but the prussure in the

fluid will not have the character of FiG. (2-6). A theoretical solution for

this case can be derived from [3). Without pursuin_1 the matter further, it

should be stressed that the approximation must necessarily become poor i.

V l<  V and c differ ttle, regardless whcther V > c or V <. c. In the superceimic

ca~e caution in theofore indicated unloss V k 1.5c. Further numerical work

to find I= close to V c the approximtion may be used is planned.

I 1C,
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Returning to the superseimic range, it is important thac the enalysio

for the fluid, based on the approximation, indicates no attenuation of the

pressure vith depth. (Thi. conclusion can of course only apply for the

range z<<r for which the approximation can be valid.) If the approximation

were not used small differences with depth roiald be found, but there vould

be no appreciable attenuation, until the depth -, becanes copparable to the

radial distance r. (In the subscismic range, on the other hand, an analysis

usin the same approximation indicatea substantial attenuation.)

Thb.situation for the fluid, which in itself is not per.inent, la been

discussed at length because equivalent approximations can be made for the

elastlc solid or other media. M'thcmatically speaking the steady state col-

ution in the superseinic range is an asymptotic approximation) for short

time after arrival; becauso the air pressure signal used is the one for a

point on the surface at the distance r frcm Sround zero (not for point F,

-- Fig. 5a, where the first signal originates) the approximation as proposed

here Is also restricted to sufficiently s11 depth z, such that the pres-

s ures at the two points do =n differ ntcal.*

1

(* it would be an unwarranted refinement to uce the pressure at ,oint F
as basis, because the location of this point would require a cumbersome
conputation for each depth z. Yet, if the actual air pressure varies so
rapidly that the presoure at F differs dp.preclably from the pressure
exactly above the point considered, the signal vould be affected by these
v.riations vithin a short time after first arrival. In such a case the

j steady state approximtion would be poor and useless array.
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3. ILML? SPACE OF LI1UAR-EITIC 60LID.

The effect of an applied surface pressure according to Fig. (1-1)can

be obtained again by superposition from the effect of a concentrated

step load. However, the effect of the latter is much more complicated

than in the case of an accustic fluid,

a) Effect of a concentrated step load.

The literature (4], (5] contains formal solutions for the displacements

of the eurfane 6ue to buried horizontal and vertical step loads. By virtue

of a dynamic reciprocal theorem (6], (71 it is concluded that the vertical

and horizontal components of the displacements, due to a ,tep load on the

surface, are, respectively, equal to the vertical displacements of the sur-

face due to vertical and horizontal step loads acting"below the surface,

see Fig. (3-i). The above-named papers furnish for= expr.-essions for the

displacements for thu present problem; expressions for the strains and

stresses can be obtained by routine manipulations. Howe-er, the expressions

are not in closed form, they require the very cumbersome numericol evalua-

tion of definite integrals. A series of displacement hi.stories w . computc-d

and 6raphically presented in (4]. While extremely helpfal for purposes of

the general discussion which follows, these graphs could not be utilized

for the numerical determination of stresses or displacements due to the

durface pressure, Fig. (1-1). Numerical results reported below had to be

- developed from the available th( oretical expressions.

General information on vave propagation phenomena iu elastic solids

can be found in stwandard texts, defining P-waves of dilatation (velocity Cp)

and S-waves of distortion (velocity e< ap). In addition the existence of

surface waves, called Rayleigh waves (velocity cR <c), ia established.

Knovledge of these wave types permits a purely qualitative description of

the atat.e of stress in a ia.f apace due to a concentrated step load, Fig. (3-2).
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At a given time t after applieation of the load, the discontinuities

associated with the frofts of the P and S waves will have reached the

surface of spheres of diaeters tC. and tc, respectively. Further, the

region between the S and, P fronts is divided by a conical surface SP,

locating the Van Schmidt front. The Rayleigh waves will be of iuportence

on the surface at or near R, somewhat behind the S-front.

Considering a point r, z, Fig. (3-2, the wave fronts will proeress

with time; tae P and S fronts will pass through any point, while the SP

front will only pass through points for which the ratio z/r is less than a

critical value which is a function of the ratio cS/cp. Rayleigh waves

will be only noticeable near the surface, i.e. if z/r is very small. This

qualitative description is borne out by Fig. (3-3 giving the vertical

deflection v - Wp according to Reference (4) for three ratios z/r.

For r/z - 0.5 only the P and S waves pass the oint; for r/z = 5 the SP

front appears, and t ere is a faint trace of the Rayleigh wave; for r/z = 4o

the Rayleigh wave is fully developed and is a major effect.

It will be noticed that the response curves in Fig. (3-3)at the P ani S

fronts show peculiarities, i.e. discontinuities or infinite values. These

are due to the singularity in the mathematical fiction of the assumed

"concentrated point load." If the effect of a physically possible dis-

tributed load is computed by integration over the response from the con-

centrated point load, it is found that undue peculiarities disappear.

Response curves for other displacements or stresses will obviously

be of a similar complicated nature, having various ranges as functions of

r/z and of the nondimennional time - = et/R. To find the response due

to the pressure defined in Fig. (l-!)by a purely numerical integration process,

covering the entire response range in r/z and -, , would become extremely

involved and time consuming even using modern computer equipment. For this

reason an attempt will be made to recognize the important effects in each
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location of interest and to find. suitable approximations, similar to, or

more general than those developed in Section(2)for the liquid half space.

b) Effects under ground zero, r - 0

Consider a point A at r - 0 at some depth z >> r, Fig. (3-4), at a

time t quite soon after arrival of the first signal from a surface pres-

cure p(r, t) of the tpc uhown in Fig. (1-1). At this time only the surface

pressure acting within a circle of radius p , (see Fig. 3-4) can con-

tribute to thi response of point A. The integration over the effects of

a concentrated load on the surface will then involve only curves which

have the nature of the curve for r/z - 0.5 in Fig. (3-3). To define the

response in this range (r/z < i/V't ) the Jumps at the P and S fronts

were obtained (in closed form) from the theory. The result for the ver-

tical displacement w is shown in Fig. (3-5). The portion of the curves

between the P and 0 fronts, and the portion following 1;he S front a.ze

graphiccX13, given in [4]. They are so close to straight lines that they

were approximated by straigbt lines to obtain a single idealized response.

(The level of the horizontal line for r > ! io define,! by the 5- ti adeflec-

tion, known from Bouusinesq's solution.)

Using this approach the vertical velocity * of a point at z = 1000 feet

was computed for several values of t. The results are shown in Fig. (3-6)

and compared with the vertical velocity *0 on the surface. It is seen that

in the time range plotteu the -Aocity histories on the surface and at the

depth of 1000 feet cannot b. distinguished. The situation corresponds to

the one shoim in Fig.(2-2)for the fluid; and we draw again the conclusion

that in this location, r , 0, the acsuamtion of one-dimensional save propa-

gation will give a good approximation for the important, early, high-pressure

part of the signal.

For a linear-elaztIc material one-dimenolonal wave propngation implies
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no attenuation of pressure with depth; this conclusion, however, must not

be applied to actual material which will behave non-linear at high pros-

sure levels near Ground zero. The non-linear casu is discussed later,

Section(5),

c) Effects in the high-pressure (supersoismic) ranga at moderate

depth, z << r

In the correspondinG case of the fluid, treated In 2 (b), it was

found that the response for a considerable length of time (several hundred

ma) could be approximately determined from a steady state solution. This

solution was the response due to an applied planc pressure p = f(t - x/V),

whert f(t) is the pressure history on the surface above the point consid-

ered, and V is the velocity of the shock in air at this point.

Using the sam general reasoning as in the case of the fluid, one

comes again to the conclusion that at moderate depth, z << r, the early por-

tion of the response in the elastic solid can be obtained with good approxi-

matio.o by computing the response to the simplified steady pressure pulse

p - f(t - x/V), The solution for this problem is available [81 and enclosed

as Appendix A( * ) . However, it must not be concluded without further inves-

tigation that this approximation will be sufficient for a considerable time,

as in the previous example for the fluid. When discussing the latter case,

Fig. (2-5 it was pointed out that the computed pressures for t > 200 ma

were larger than the approximate values, which was ascribed to effects

originating in the region of very high pressures near r - 0 shortly after

the explosion.

(*) Thero is a printing error in (e] for the suporseismic case, which

is corrected in the Appendix.
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I To hava a basis for Judging the accuracy of the response of the

elastic solid at later times, It is necessary to consider effects originat-

ing in the region of high pressure. This could be done by a complete

Inumerical determination of the response to a step load from (4) and (5]

and subsequ3nt integration for the prescribed load p(r, t). The very ex-

tensive nuwrical work required is however not required. By qualitative

consideration of the energy available, one can reason that. the effects of

the P and S waves from the region of high pressures will be of the same

order of magnitude as the pressure wave effects in case of the fluid,

and as far as the effects of P and S waves go the steady state approxima-

tion in the solid should be as good, or as poor, as in the fluid. 'ihis

reasoning does not include, however, the energy transmitted by surface

waves. It is obvious that the energy of surface waves passing through a

point at some distance r will be a function of l/r, while the energy in P

and S waves decreases as 1/r2. Rayleigh wmve effects decay therefore

slower than the other effects and cannot be Judged on the basis of an

example for the fluid. Stresses or displacements caused by Rayleigh waves

originating in the high pressure region must therefore be ccmputLA, and if

substantial they must be added to the "steady state solutions." As Rayleigh

wave effects decrease rapidly with depth, their relative importance comparedi:
with the effects described by the steady state solution will depend on the •

*depths of the point considered. For sufficiently deep points the Rayleigh

- effects will become negligible, but the depths where this occurs are not

known beforehand. It was therefore necessary to develop an analytical pro-

cedure for the determination of Rayleigh (surface wave) effects.

This suggests that the response in this range my be obtained approxi-

mately by using the "steady osate solution" and adding, if necassary, the

*. Rayleigh wave effects. it is now appropriate to consider the steady state

solution and its limitations.
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Discussion of SteadX-State Solution

if a pressure wave p(t - x/V) travels with constant superseismic

velocity V" c. > c on the surface of a (linear) elastic colid, it pro-

duces an inclined plane P-wave and an inclintd plane S-wavc in the solid,

a; shown in Fig. (3-7). The intensity of these pressure ana shear wuvuu is

proportional to p(t), the factors and analea of inclination depend on the

ratio V/c p and on Poisson's ratio, see Appendix A. Fig. (3-7)shovs two

cases V/er = 1.5 and 3, both indicating that the P wave has nearly the

same intensity as the applied surface pressure while the S wave is less

important. The theoretical solution has the character of Fij. (3-7)as long

as V > op. However, as the velocity V approaches c, the strengths of the

waves vary rapidly as function of V/Cp, as seen from the following table

(for Poisson's ratio 1/4).

P- Wave S- Wave

Vcp P /P -T/P

3.0 0.99 0.22

-i1.5 0.96 0.45

1.3 0.97 0.52

1.2 0.99 0-56

1.1 1.05 0.59

1.05 1.19 0.58

1.01 1.71 o.46

1.001 2.40 0.21

1 3 0

h(*) Te s't'ition is also presented graphically in the Appendix, Fig. A-2.
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'The sensitivity of the solution for ratlos V/ep : 1.1 indicates

clearly that the steady-state solution for ouch ratios cannot be used as

approxination. One can easily give an alternative reason ity the steady-

state solution becomes poor and invalid ans V/cp - 1. When this ratio

approaches unity the inclination of the P front goes toward a -. 900;

if one considers the target point A in Fig. (3-8):the first signal wil

originate from a point F vhose horizontal distance (because of a 96e)

is quite large comlnred to the depth. Signals from other intermediate

points, say F', will arrive a very short time later. Obviously, if the

horizontal distance AF is large, the pressures at F and at intermediate

points F' will differ radically, and r utoady-state approxiration becomes

invalid except for very small values of z, and for a very short time after

arrival of the first sign .

One can use the above consideration to judge the applicability n cases

of smael ratios, V/c, < 1.5, by comaring pressure and velocity above the

point considerod with these at point F. In the ease V/cp - 1.5 shown in

iig. (3-7), the angle of the P-vave is m - 41050'; considering a target A

j at a depth z - 500 feet, the horizontal component of the distance is

A? = z sin a w 333 feet. Variations of pressure and velocity V in such a

1distance are such that the result for this particular depth my still be

ii. considered a crude approximtion.

Whenever the steady-state solution becomes unsatisfactory the early

part of the signal could be determined by using idealized curves for the

response due to a concentrated load, similar to the one shown in Fig. (3-5).

Further work In this direction appears desirable because the range where

the steady state approximation is unsuitable is still of practical interest.

Hoverer, even by using idealized response curves the tr=4rical integrations

req=t'r are likely to be cumbersrue.
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Determination of Ruyleieh Wave Effects.

The analysis contained in [4) and 151 wap carried further, (9], and

expressions for streoen and displacements duo to the surface waves gen-

erated by a concentrated load are given in Appendix B. The expressions

are in closed form, and represent the major portion of the total response

for large ratios r/i and in the vicinity of v - S-C/c E.g., the

- ft-nd will give a very good approximation of the portion near

- * 0.9 of the curve for r/z - 40 in Fig. (3-3).

As example the stress azz due to surface waves is given in Fig. (3-9).

It is seen that effects occur only during a short period of tine, of the

order two to three times z/c, where z is the depth of the point considered.

To obtain the Rayleigh effects from the surface forces due to the pres-

sure history in Fig. (1-1), a formal double integral is derived in Appendix B.

Itb evaluation for typical locations required the use of an IV 704. The

analysis indicates that the stresses arr are larger than the other stresses,

aSO I azz , rz such that the importance of Rayleigh effects generally may

be judged by considering arr* Figs. (3-10) and (3-11) show the computed

time history of the stresses err at a number of depths in two locations.

Fig. (3-10) presents the stresses at r . 2000 ft. for a medium having

V - 1/4, e *. 10,000 ft/s-c (c, : 17,000 ft/see). Fig. (3-1) gives similar

results for r a 3200 ft. for a mediua with v - 1/4, but having c - 6000 ft/see.

(Cp : 10,000 ft/cec). The decrease of Rayleigh stresses with depth is quite

evident.

Comparisons of stresses due to Rayleigh effects and due to the effects

of P- and 8-waves are shown in Figs. (3-12) ana (3-13). The former shows

a and arr for r - 2000 ft. at a depth of 100 ft. for the come medium for which

Fig. (3-10) applies. In this location the velocity V of the shock In air is

larger than c. t 17,000 ft/aec., and the "steady state solution," Appendix A,
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could be used to compute the pressure waves arriving ahead of the surface

waves. The time t used in the Graphs is counted with respect to the in-

stant of tbc explosion at r a 0. The two spikes in Ozz represent the

arrival of the P- and 5-waves, respectively. Similar spikea occur in err,

except that the one due to the S-vave is not in the same direction as the

one aue to the P-wave, ouch that the stresses o remain high only for a

short time. Fig. (3-A sho s that in this location the peal values of the

signal from P and S-waves are larger than Fayleigh stresses, but the dura-

tion of high Rayleigh stresses in c Is loneer. Depending on the response

time of the target RayloiCh stresses may or may not be Ignorable. At creater

depth of course the effects of the P- and S-waves do not change materially,

vhile Rayleigh effects decrease rapidly, such that the latter will bccome

imaterial.

Fig. (3-13)sho, a similar comparison for r - 3200 ft. at 100-ft. depth

for the medium used in connection with Fig. (3--ii.

Additional numerical results are presented in Appendix B. Attention is

drawn to the fact that the formulae developed in Appendix B canno. be applied

for points on the surface, z = 0, because negative powe - of z occur. As a

consequence computational difficulties would arise for very small depth,

and only results for points at a depth of 25 feet or more were obtained.

The trend of these results as a function of the depth is such that

rather large stresses arr and a.9 can be expected near the surface. ( *

The existence of such high stresses in the elastic analysis make it in-

applicable to actual situations near the surface z - 0 such that the addi-

tional effort required to derive an appropriate analysis for shallow depth

was not expended.

(z) The vertical stress azz and the shear stress arz or the free sur-

face must vanish.
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The occurrence of high Rayleigh stre-ses near the surface in itself is

a limitation to the applicability of the linear elastic theory to actual

solutions. Referring as examole to the situation in Fia. (3-12, at a die-

tanco of r - 2000 ft., the air pressures actiiL at the surface are such

that the use of linear elastic theory is reasonable because the stresses

obtained from the steady-state solutions ro suTf*icntly loy . The stresses

due to Rayleigh vaves (which occur at a later time) at this horizontal

distance at the depth z -100 ft. will also be small enough to be in the

elastic range, but, as the se= can not be said near the surface, the

Rayleigh stresses everywhere can not be considered reliable; the values

computed by the theory are presumably much too large. Combining this con-

sideration with the effect of the crater, discussed in Section 6b., the

Rayleigh stresses in Figs.(3-10)to(3-1 should be considered as upper bounds

only.-

d) Effects outside the ouperseismic range, at depth z << r.

It is noted that even outside the superseisnic range the effects at

shallov depth z <<r can be divided into a signal due to the air pressure

passing over the target point, end a Rayleigh signal. The latter can be

determined by the method previously outlined, which does not depend on a

particular location of the target point. AppendL B contains also results

for subsoismic locations.,

To obtain the effect of the air pressure passing over the target point

one can try to use the steady state approxima-ion. The solution to the

steady state problem is available (0] but it is somewhat more complex than

in the ajperseismic ringe. (M There are actually two ranges, depending on

whether V > a or V < e. Further, a steady state solution will again be

useless if the velocity is close to cp . Another trouble spot has been

14) potentialy useful expressions for the steady-state solutions due
to exponentially decaying preasurea are contained in D.6]. They
might be utilized to tabulate the solutions.
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pointed out by Miles 1101. The steady-state solution indicates infinite

atroasoa t and bacozco Inappl able i.f V - c, vh ro % io tho floalai&hx

rave speed. A fornzilation for a surfacc pressure with varying speed vas

obtained in Raference (10] to overcome this difficulty. No numerical

roults are available at present. Tho combination of tho ntosdy state

solution nd of the Tayle~h vayve contribution: Givcu therefore only a. par-

tial answer in this rnge. * ) It should be stressed that the steady-stato

solutions outside the supersomisic range indicat attenuation of the response

with depth; this vould indicate--at !east in the theoretical elastic medium--

that the surface vave effects outside the superseismic range may remain

significant at larger deptih han c supersoiomic range.

I!

(*) No cotutatlono to check the accuracy of the steady-state approxima-
tioaa %similar to Fig. 2-5) appear to have been made by aayone.
Such a check may be desirable because qualitative cor3iderations
lead to the suspicion that this approximation outside the superseis-

ic range might be poor.
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4. LAY'ED msDIA

In ,pite of the fact that layering, or Gradual chansc of the medium

vith depth will have pronounced effects, only a few applicable solutions

are available. This is due to the complexity of the problems of laytred

media. The steady state case of a pressure pulse progressina with conatant

speed V on the surface of a fluid layer above a fluid half space, Fi, (4-1)

has been considered (31 without restriction as to the value of the velocity V.

The equivalent problem for a layered elastic solid has been solved (11]

in an elementary mnner, but only in the ouperseismic range, i.e. vhen V is

larger than the sound velocities in either medium. i. (g.42)shcows stresses

a due to a step vwavo of constant pressure, when the velocities of ep(2)

and c( 2 ) in the lower medium are twice those In the upper one. It is seen

that the vertical stresses az both at points in the upper and at points

in the lover medium are increased by the reflections from the interface. If

the applied pressure on the surface has a decaying history, a case which is

treated in (ii], the reflections my be less important, because they are

added to a reduced stress trcm the dir~ct Sieal. "avcr, t n=1t be

emphiasiW. that layerIn _Lwa increases the vertical stresses if the

velocity of sound increases with depth. Reduction of pressure, iudicating

a protection, occurs only in the unusual case when the sound velocity de-

creases with depth. The reverse applies for vertical displacements and

accelerations; they decrease due to iayoring if the sound velocity increases

with depth. The approach used in Reference [11] can be extended to any

number of layers, as long as the velocity V is larger than the sound veloci-

ties in any layer.

A probles Involving a layer of fluid over an elastic half-space has

been treated theoretically and experimentally in Reference (12], vhere the
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resiponse from a point explosion in the 1naror has boon obtained* Fig. (1.3).

The cwnhas81 in this ppr vas on %rayea propagpted on tho interface. It

is experimentafly poasiblO to MCanure preeziurea in a flaid reliab1~, ..nd

goo~d agoewat bstveen theorY and experiment V0.5 0obtaied-
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5. ONE-DIMENSIONAL WAVE PROPAGATION IN A ION-LINEAR ELASTIC MEDIUM.

In Sections (2) end (3) it could be demonstrated that for the cases of

linear behavior of fluids and elastic solids the assumption of one-dimensional

wave propagation gives good results for the early part of the response of

pointo belov ground zero, r - 0. This conclusion can be drawn qualitatively

for any other medium if the velocity of wave propagation is much smaller

than the velocity of the blast wave on the surface.

The early pressures near r - 0 in actual situations are so high that

non-linear effects must occur in any conceivable medium. It is therefore

very important that the effect of pressure distributions of the type given

in Fig. (1-1) can be determined as a problem in one-dimensional wave propaga-

tion, because such a problem--even if non-linear--can ce handled by nmerical

methods. As a matter or fact some useful general conclusions uau we arawn

for a General class of non-linear elastic cases.

Consider a rod-like element of the half-space, Fig. (5-1). The "rod"

has unit cross-sectional zea and extends from the surfaee z u 0 to z - .

-- In the present situation the horizontal starins must vanish such t at the

area of the rod does not change. Let Fig. (5-2) be the appropriate stress-

strain diagram of ve-.tical stress a versus vertical strain e. For suffi-

ciently small stress, say a < aL' the law may be aoumed to be linear.

Let a decaying press-e pulse p(t) - a (0, t) be applied to the rod, such

that the peak of p(t) is larger t tan L'

1 The response for the case described aove could be computed numerically

for any given stress-strain diagram. Hov.-ver, an equivalent problem has

1 been considered in (34], Sec. II for a bi-linear (plastic-elastic) medium.

The medium has the stress-strain diagram, shown in Fig. (5-3), which is a

I special case of the one indicated in Fig. (5-2). Fig.(5-h) abows the stress
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response for an example, which can be considered typical. The example

was computed for an input pressure at z - 0 which h&a a peak of 18),000

psi, while at points below the surface, z w 500 feet and z a 700 feet,

much smaller peak stresses were found. On the other hand, stresses at

t a 100 me ox more after arrival at the lower levels were larger than

the corresponling input stresses. (The reduction of peak stresses must

be compensatek by sons increase of stresses at later time to satisfy the

law of conservation of momentum.)

From the above example one concludes that in the non-linear case a

reduction in peak pressure with depth (attenuation) is to be expected.

This attenuation will however only continue until the peak pressure has

dropped to the value aL, defining linear behavior in the stress-strain

diagram Mgi. (5-2).

As long -a the applied load is such that the assumption of one-

dimensional wave propagation is reasonable one must expect peak pressures

of the magnitude of the stress aL defining linear behavior. Some idea

of the level of aL can be gained from the simple tests on granites described

in Appendix F. It is seen that the stress-strain relations are fairly

linear, up to fracture on the 15,000 to 20,000 lb. level. In the case of

plane vave propagation where transverse strains and therefore fractures

similar to tha tests are inhibited, it Is to be expected that a nearly

linear relation will hold up to even higher stresses, oL > 20,003 1/in.2
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6. USE OF THEORETICAL RESULTS FOR PREDICTIONS IN ROCK.

When comparing the 2omplexty of an actual situation with the relative

simplicity of the problems analyzcd, it should bc clear that theoretical

solutions can not give a complete picture of stresses everywhere, but can--

at best--pormit a rough estimate of the stress field in certain locations

at certain times. In view of the scarcity of experimental Information,

the theoretical solutions must be exploited by searching through qualitative

reasoning for situations where they ,

Before discussing specific locations, it is convenient to list major

effects not appearing at present in the theoretical solutions. Concerning

the effect of the explosion, only the air pressure on the surface has been

considered, ignoring not only heat and radiation effects, but also effects

due to the direct Impact of the casing at the point of explosion. Concern-

Ing behavior of the material, high pressure levels requiring an equation of

state are not I thin the range of this study, which eliminates the crater

region from further consideration. On the stress level considered here,

materials might not behave elastically but In a viscous or plastic manner,

or exhibit other dissipative mechanisms. The fact that only small strains

are considered should also be mentioned but is, on this strcas level, not

likely to be serious, as the strain will not exceed a few per cent.

a) Target locations below the crater,

Consider a target below the crater; it may be at twice the depth of the

crater, Fig. (6-1). Without knoving the presaure history exactly, we know

that very high pressures are propagated downward over an area exceeding the

--diameter of the crater.

While the formation of a crater is evidence that the situation is not

really a "plane wave" situation, the fact that the crater Is a flat bowl
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dissipative effects are not likely to be very important (which does not

mean that solutions including such effects should not be sought). Esti.

mates of the first signal based on steady state solutions, particularly in

the superseismic ranne, should therefore be of real significance. The

pronounced difference according to theory between superseismic and sub-

seismic ranges, the former having no or negligible attenuation of peak

pressure with depth, while the latter has pronounced attenuation, can be

expected to be a real fact.

The situation concerning the second signal is much more uncertain,

because it Is due to forces acting In tile crater region where the elastic

theory can not possibly apply. The elastic theory predicts Rayleigh (surface)

waves as the major signal to be received; now, the existence of such raves

requires an Interaction between direct and shear stresses, such thrt they

do not occur in a fluid. At high pressures in the crater region the

material is acting lie a fluid, and one is led to conclude that the incep-

tion of surface waves will be inhibited, and that the elastic theory will

grossly txaGgerate surface wavez. 17or thAs reason the Rayleigh stresses

computed in Appendix B must be considered too high, presumably very much

too high.

There is a second reason why the Rayleigh stresses in actuality must

be less than round from the elantic theory. if the stresses found were

otherwise correct, those near the surface arc larger than rocks are likely

to withstand. It would not rmti .r if such high stresses were nzearly hydro-

static, but the state of otrers in surface waves is inherently dcviatory

(W) hen arguing that the actual stresses due to surface waves are amfler
than given by elastic theory, one should not be misled into the con-
clusion that they can always and everywhere be Ignored. It ohoulA be
remembered that at very large distances s tsmological experi~nce proves
beyond doubt that RAyleigh waves are the dominant effect. Tere met
therefore be a transition rarge beyeo& which surface vaves can not be
ignored.
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(i.e. having considerable shear deformztion). The region near the our-

face ought therefore to be analyzed -s an elaotic-plastic medium which

vould lead to lover stresses. ( * )

Pending further study the Rayleigh stresses obtained in Appendix B

can be considered only as an upper bound. Such a bound is usu-ful b eaus

whenever comporison of the first psrt of the reoponse indicat 'at it

exceeds the Rayleigh stresses in Importance) the latter can be safely

ignored. E.g., in the suprselmic range this permit- determination ofa

depth bolov which Pay1eigh stresses are certain to be mnll compared to

the early response.

()Any other dissipative effect would also lead to lover stresses due to
surface waves. Such waves in a visco-elastle medium have rcently
been considered 115).
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7. WAVE PROPA0ATION IN LRANULAR MEDIA.

The behavior of certain solids under vory high intensity, confined

or hydrostatic pressure is characterized by a non-linear stress-strain

relation of positive curvature which, upon unloading, shows large porman-

cat strains. This response is mrniiosted at dirfrent pressure levels in

1various materials: at low pressures in foam-rubber, in the 100 to 16,000

I psi range in granular soils and presumably at much higher pressures in
A

porous or solid rocks.

1 A typical stress-strain diagram of this type is shown on Figure (7 1);

this diagram can be idealized by various linear diagrams shown in Figures

L| (7-2), (7.3) and (7-4).

Figures (7 2) (a),(b) and (c) show a class of materials known t, loce.-

ing media (a), or materials of limited ropr~esibility, (b) and (c).

These materials have the property of becoming essentially incompressible

or rigid upon compression when a critical strain C is reached. At that

Iinstant a sudden locking or compaction of the medium occurs, and upon

unloading the permanent strain c remains.

If a certain amount of residual elasticity exists after compaction

j or locking, the material can be represented by the bi-linear diagram shown

on Figure (7-3). If the irreversible compaction proceeds gradually, the

j stress-strain relation is that of -1gure (7-4). This material acts elasti-

cally on loading and unloads with a permanent set as shown in the figure.

I Rather extensive literature is available oa the static behavior of

1 locking media, [24] and [25] and plane wave propagation in both locking
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media, (Figure 7-2 (a), (b) and (c)), and in the type of material shown on

Figure (7-4) which has also been investiMted ([26] and (27]). M.Iore recently,

problems of unvo propagation in bi-lincar materialU of the type shown in

Figure (7-3) have been solved. Spherical waves in locking media are ex-

plored in References (29], (30] and (31).

Most of these investlgations find application in researches connected

with the prediction of ground shock effects due to thermonuclear blasts )

[323 and E33];or are concerned with the detection of underground nuclear

tests, (303 and (311. An application to the design of invulnerable, deep

underground shelters is considered in References (18] and (19], and a

general discussion of these topics is found in Reference (34).

Some of the relevant results, such as shock-velocity and the attenua-

tion of peak pressure intensities with depth mey be sumwrized az follows:

If the surface of a semi-infinite locking medium of the type shown

in Figure (7-2a) is subjected to a decaying pressure p(t) the shock

velocity i of the front locaLed at a depth z is given in [26] and (27] by:
I . .. ,. ,. l-1/2

p- at po % )o , J (7-1)

where p is the density of the medium, and 1, the impulse of the epplied

pressure: is

I - I p(t)dt (7-2)

The amylitude of the peak stress z is related to the depth z by:

CF a 1 2z.2 (7-3)
z PC@
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For a medium vhich ahovs a gradually irruvaruible epaction (Figure 7-4),

the abore quoted-reference gives the propagation velocity as:

CO  monstnt (7an)

where E in the elastic modulus of the medium. The attenuation of the perk

stress vith depth follows the lav:

N u erical evaluation of the stresses and particle velocities in a locking

Lwdiun, (Figure 7-2a), subjected to high intensity blast pressures dis-

closes the following significant results [18).

(a) The intznoity of peak atresoo (and of the particle velocities)

In locking media attenuates very rapidly with depth. (See FEigure 7-5).

(b) The attenuation of these quantitics It to r, surprising de{sree

inc'sitive to variations of the parameters of the medlum. For example,

at a high yield surface burst near ground zero, the intensity of stresses

beyond a depth of 500 feet differs only slig ,ly for materials which have

a wide range of critical strains (e a 0.02 to 0.10 as shown on Figure 7-5).

(c) The existence of residual elasticity has an equally slight

influence: A locking medium with a critical ate-rin of Cc M 0.02 iE compared

with a bi-linear me ium of identical critical strain but ith a residual

elastic modulus of E - 10 psi in Figure (7-6) and we note that the attenua-

tion of peak streoses beyond about '00 feet of depth is not significantly

affected. These phenomena have been found to exist for a rather wide range

of variations for both parameters ( c and E) and are the subject of detailed

investigations in Reference (28].

These conclusions are of interest because they show that the essential



and signific-nt attenuation of blast pressures can be anzicipated in a

large variety of dry granular coils. Consequently, the free field para-

meters should be predictable if a limited amount of information is avail-

able regarding subsurface conditions.

As mentioned previously the theory of spherical wave phenomena in

locking media bac been applied to study the effects of underground explo-

sions. IA [29) the effect of an exploding point mass is considered with

a view towards exploring the effect of the so-called "direct ground-shock",

(i.e. the axpioding casing of the veapon) in a granular soil.

It is found that the spherical shock at a radius R propagates with

the velocity:

R ' ( 3 (7-6)

rm

where the kinetic energy of the mass M of the casing is:

1 *2

and the quantities:

-.3 .M (7-7)m 4 p(C-3 _ - ).
c ac

_ ~~n _ C'3 1.l
P = I§ + 6 c~ l -_1 (7 -8 )

are constant characteristics of the medium and of the casing.

It is expected that this work will also shed some light on the problem

of a surface burst, as an early time approximation of the direct gund

shock effect.
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DIFlACT'ON EFFECT8

8. IHNMODCTION

Thermonuclear explosions on the surface of an elastic half-space pro-

duce a complex stress pattern in the medium. In the most general case,

the circularly-ymzmtric surface pressures from the explosion, which expand

radially outward from Ground Zero in space and decay in time, produce a

stress pattern at points in the medium in which the two principal stresses

change in magnitude and in direction with time. The diffraction of the

stress field by a cavity containing a hardened underground installation

must be considered with a view towards obtaining the following information:

1) Stressos produced by the dynamic loading of the cavity with a view

towards determining the strength of the cavity as a whole. In addition,

the Nelocities, displacements and accelerations of points on and near the

cavity boundaries are required for the determination and evaluation of shook

effects and for the establishment of failure criteria for the cavity and

its contents.

2) Shock spectra for a) the total accelerations imparted to the con-

tents of the cavity, and b) the relative diaplaccmzaftn of the content6 of

the cavity (relative to the cavity boundaries) when the cavity in enveloped

by the stress waves produced by the explosion. The contents of the cavity

may be shock mounted and the shock spectra are required for an optimalization

of the design of the installation.

The solution to the general problem of the diffraction of the rather

complicated stress field by The cavity In an elastic medium can be constructed

for easep of interest by the superposition of the results obtained from some

ba.ic' ieas complicated problems whioh are considered in Pavt I.. M pecifically,

the diffraotion of the stress field produced by P (dilatational) and S (shear)
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waves respectively with plane wave front- ere coneidereil. In both cases

the general solution is obtained for a step pressure in time which can

be used as influence coefficients to give the results for waves with

arbitrarily time varying pressures by meas of Dahnmel integrals.

The solution of these problems (stresses, velocities and displace-

ments) can be uved to construct solutions for the general case in which

Vito incoming stress history has a more complicated character.

Morcovor, they are of direct use and importnco in the supereismic

range (V >cp ) tn which the loading on the cavity has been shown to consist

of P and S waves with plane fronts carrying pressure components -which decay

in tize [see Appendix A). For this range, the solutions represent an

approximate answer to the actual physical .problem and can be used directly.

The above theory has been determined with the assumption that the

cavity containing the installation is not lined. Practically speaking, the

problem of the cavity lining--structural or anti-spalling--is quite important

in the design of these installations and must be studied. A method of attack

in which the results obtained for unlined cavities are used as Influence

coefficients in integral equations for the corresponding oolutions to cavi-

ties with linings is also developed in this report (Section Ill.

Section (9) gives the results for stresses, velocities and displacements

produced at the boundary of the cavity oa it is enveloped by plane P and 8

waves. Curves are presented for the case in which the pressure inputs in

the waves are step functions in time, as well as for waves with particular

time decaying pressures produced by a hypothetical 20 Hr4 surface burst. In

addition, the superposition of the incoming P and S waves is shown for a

particular tunnel location.
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Se(.tion (10) contains the shock spectra curves for the total accelera-

tion and relative displacement of installations which are shock mounted in

the cavity. It is assumed that *he equipment can be mounted in several dif-

ferent v~Tys and shock spectra are presented for several cases of interest.

Heretofore, shock spectra used in this type of design were computed from

free field input pressures, and the effects of the diffraction of the waves

by the cavity were neglected. The shock spectra of Section (10) include the

diffraction effects and are consequently more appropriate; they .il now

supersede the free field spectra and should be of considerable use in

obtaining more accurate design data for the shock mounting of the cavity

contents.

Section (11) presents an outline of the theory by which the various

results obtained for an unlikiud cavity can be used to determine the corres-

ponding results for a cavity with a given elastic lining. Numerical solu-

tions of the resulting integral equations are not yet available, but should

be completed in the near future for seve.ral cases of intexest.

Secrtion (12 pruben.. o4.u guieitl conclusions relati';e to thc -cct.ltz

obtained in Sections (9)-(11).

Following the format of Part I, the theoretical formuLations of the

work are presented in Appendices C, D, E, while the results are reported in

Sections (9), (10), (U), (12). The results of some tests to determine the

elastic properties of granite undk static loadin3 are given in Appendix (F).

The following recurring symbols are adhered to in Part II of this report.

C Velocity of pressure (P) waves in a linear elastic solid.p
C Velocity of shear (S) waves in a linear elastic solid.

The velocity c appearing in the abscissa of the various curves in Part II

refers to the velocity of the incoming wave as shown in the figure or noted.
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BY THE DIFRX?' CIN OF PLUEI "P" AND "S" WAVES BY A CYLINRICAL CAVITY

An infinitely long cylindrical cavity in an infinite elastic hcmogeneous

and ± .c =diu is acted Ln by a pl-ns - vc .v oe vse front is

parallel to the axis of the cavity. The shock wave propagates through the

medium with a constant velocity c. ("P" wave) and envelops the cavity

(Fig. 9.1). For genorality, it Is aasumd that the direct stress components

carried by the wave are eU(t) and caU(t) , which are respectively

parallcl and perpendicular to the direction of wave propagation.

The solution of this problem for the inputs aU(t), (c - 0) or coU(t)

only, my be used to construct the solutions to problems in which the free

field has a morv general nature. For the superseiamic range, in which a

component of the input is actually a plane wave, the value of q for a plane

wave front must be taken as c n -1/3.

Preliminary results for the stress field produced at the boundary of

the cavity by the incoming "P" wave have boon reported in (17], (18], (19],

while the complete plane strain solution to the problem h;u- been given in

.201. rhe precueL paper extcr-dc these "ulto to include both P and S waves.

In sdWition, roults are presented for the velocity and displacement fields

produced in the medium at and near the cavity boundary. The theoretical

development for the velocities and displacements are presented in Appendix D.

Although the true physical problem under consideration requires a semi-

infinite medium with a roughly p .ne boundary at z - 0, it is easily shown

[Ref. 18, Pg. 36] that in the range of practical interest, the plane boundary

essentially has no effect during tiles of interest and the results obtained

by ooneidaring tho moditm to bo infinite will be satiofaetory for tunnels

where depth "D" is greater than 4 to 5 times the radius "a". For such

inotallations, the major effects such as nximum hoop stresses, occur at

the boundary of the cavity at times considerably shorter than the arrival

tim of the relief wave from the plane surface at z a 0.
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a) Hoop stress produced at the boundary of a cavity (201.

Figs. (9-2)-(9-8) show the hoop stresses coo produced at poInts on

the cavity boundary by various stress waves which envelop the cavity. The

stresses at two points arz presented: 0 - O, the point at which the shock

front first hits the tunnel; and 0 - 90°o the point at which the maximum

stress concentration is expected. In determining coo by the analytical pro-

cedure given in (20], only the terms n a 0, 1, 2 plus the free field stress

components were included; the enalytical justification for terminating the

series after the n a 2 term is presented in (18], Pa. 41 and 120].

Fig. (9-2) shows the hoop stress at r a a, which is produced by en

incoming plane shock wave with a step pressure distribution in time. The

pressure component U(t) at right angles to the direction of propagation of

the wave is taken equal to zero. The results obtained at long times must

approach the well known static solution for a cylindrical hole in a uniaxial

pressure field, i.e., a stress amplification at e w 90° of 3 (compression),

while the stress at 0 a 00 is a tension equal in magnitude to unity. It is

seen that the stress concentration is amplified by the dynamic loading in

the rato of 3.28 to 3f at 0 9Q0 and 1.16 to 1.00 at

0 - 00. It may be noted that for a step pressure wave, the problem is essen-

tially of a quasi-static nature; since the dynamic amplifications are small

percentagewise. It is also of considerable interest to note that maxium

stresses are produced at about four to five transit times of the shock wave

across the cavity.

Fig. (9-3) shows the hoop stress at r - a which is produce& by an

incoming plane shock wave which has no pressure in the direction of propaga-

tion of the wave and a pressure OU(t) in the direction perpendicular to the

propagation direction of the vave.
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The results of Fig. (9-2) anA (9-3) may be usedL to conatru:b, byf suit-

a'ile integrations, solutions for cases in which the free field pressure

is of a more general nature.

FiG. (9-4) shows the stress o00 at 0 - 00 and 0 - 903 for a plane

step shock wave with a plane front progrcssing with a velocity c p i.e. the

btndard P wave of linear elasticity theory. The requirement of a plane

front neceuoitates a transverse pressure component with c - -1/3 1.e., - 1/3 U(t

(Fig. 9-1) as well as a pressure U(t) in the direction of wave propagation.

For the dynamic loodin, the stress amplifications are from 2.667 to 2.92 at

0 - 900 (compression) and from 0.00 to+O.11 at e = 00 (tension). These

results may be used directly to obtain meaningful results in the super-

seismec range in which the waves which envelop the cavity are essentially

plane waves.

The hoop stress oeq produced by a step shock wave may be used as an

influence function to determine the corresponding stress produced by a wave

with a time varying pressure, P(t), by the Dhame1 integral (Fig. 9-5).
~t

Ce8 Poao. +,.V Co (t'T) dT (9-1)

To illustrate the above procedure, Figs. (9-6)-(9-7) present the hoop

stresses produced by plane waves with decaying pressure time histories.

The pressure time histories of the P waves which envelop the cavity are

taken as those produced on the s rface by a 20 MP surface burst at the

6500 psi (2400 ft. from G.Z.) contour and the 2000 psi (3200 ft. from G.Z.)

(*) Because, only a limited number of modes have been used in determining
the stress due to the plane shock wave, the Duhamel integral should not be
applied when the pressure-time history, P(t), contains significant hig-fre-
quency components with time constants of less than 1/2 of one transit
time.
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contour. These pressure tine curves have been given by Broda [I]. The

cavity is considered to have a radius of 17.5 ft. in an elastic medium in

which cp - 17,300 ft/sec and cs - 10,000 ft/ace.

Fig. (9-6) gives the stress a., at 0 = 00 and 0 a 900 for a plane

P wave with a Brode pressure input with Po a 2000 psi. Due to the dccay

of the pressure with time, the Duhamel integral shows a maxin= compres-

sive tress of 4500 psi at 0 - 900 while the tension at 0 = 00 is 290 psi.

Fig. (9-7) shows the corresponding curves for a pressure input with

P - 6500 psi. Tne m.axium ccopressive stress at 90 is 12,300 psi, while

the tension at 0 = 00 Is 930 psi. It is of interest to note that the

amplification of -he compressive stress over P0 at 0 - 900 was 2.25 for

the 2000 psi loading and 1.89 for the 6500 psi loading, as compared to

2.92 for a step pressure loading. Since the pressure-time decay for the

2000 psi wave was considerably slower than that for the 6500 psi wave, the

hoop stresses are closer to those forr a step wave.

Fig. (9-8) sbows the hoop stress at U - 0° and " - f5 for a plane

step shear wave with a plans front and a constant velocity c, i.e. the

standard 8 wavc of linear elasticity theory. At long timo, the stress

approaches the static solution for a cylindrical hole in a bi-axial pressure

field which produces the shear stress distribution which is carried by the

wave; i.e. a stress amplification at 0 - 450 of 4 (compression). It is seen

that the stress Is amplified by the dynamic loading in the ratio of 4.37 to

4at 45 0 andt - 4 transit times, and .lj2to Oat W- 0. It may ben oted

that as in the case of the P wave enveloping the cavity, the problem fo;- a

stop pressure input is essentially quasi-static in nature (since the

dynamic amplifications are vxml percentagewlse) and that mmxIzmz hoop

stresses are produced about two to-three transit times of the S wave across

the cavity. The theoretical results for the diffraction o? the 8 wave b7
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the cavity can be derived from the theory for the P wave; this d'velo;=nt

is given in Apendix (C).

In the s" perseismic raue (Y > ep), the pressure waves that propagate

througb the medium are standard P and 8 waveos with plane fronts end props-

go-tin velocities a and a rospectivly. These waves can be considered

to have the s0nc pressure-time history as the surface pressturc, and ampli-

tude factors which are given by Fig. (A-2), Appendix A. The P and S vave:

are inclined to the surface by the angles a -oin-n V nd a sin-' V,
ap cs

respectively. If the cavity is located at a sufficient depth fsee Sec. 6]

so that surface wave effects are negligible, one can obtain a realistic pic-

ture of the stress build-up at the cavity boundnry by suporimposin3 the

inconitig P and 8 wuves with their proper amplitudo factors and time delays

(due to different angles of inclination and different velocities 3f propo-

g-tiAn).

As an example of the superposition procedure described above, consider

a cavity of radius a a 17.5 it. in an elastic medium in which eP a 17,300

ft/eec and c - 10,000 ft/sec. The cavity is located at a depth of 500 ft.5

at the 6500 pi surface pressure contour from a 20 I'M surface burst, i.e.,

at a distance of about 2000 ft. from Ground Zero. The air shock velocity

at this distance is nbout 22,000 ft/ee; this corresponde to a Mach number

Mu - = 1.27. From Appendix I, the P wave has an amplitude factor ofP

0.97 and is inclined at an anglc . - 5 1 0- 5
' to the horizontal surface,

while the S wave has an applituwte factor of 0.53 and an angle of inclination

of 0 is 260-481. [See Fig.9-')] Fig. (9-10) shown the hoop stress

which is produced atl various points on the cavity boundarr by the super-

position of the P and 8 waves with their appropriate time factors. Due to

the difference in propagation velocities of the two waves, the delay time

between the arrival of the P and 8 waves is considerably in excess of 5 transit

tim~es.
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Consequently, by the time the sbcox wave arrives; at the cavity, the

hoop titresses proAuccd by the P wave have decayed sufficiently 60 that the

peak of the sum of the stresses produced by the two vavooth ( *20P) is.

Fig. (9-l shoa the atho stress at 0 - 90 arocd by th 90 for av at

Peale i a ceostnt velocity of prop aton, cIt ma 1039 fotec.th

maeium 6ea0 te]aapresse t,93hiptorccorrespondising teso the sullace

prestres atithe 320 frte rocki cotur.asenai blas axet toi con-y

theor on e ns el c osde 12,100 r~essure maongouthefocase csueoeisnc e

i a911 acha ntmbe of 1.1o nd0 consequentl and 0plitud facor of p.0an

thwe ave cntan cveity as a rasatin a 17. ft The39 f/im hoo

reasonab00 truess for a podranitre toecastry andreodn aocud that srac

resbepressure l32 t for0 fesibl unnerurounde airlst aton thill co

inu ths n eohotd of the200 psi conto forin the hypothetical20 lc

surfa ach urstuner o1andertonsqetyaamltuefco.f10i

Ctoupso ith z-,cth results A n ary~it of Ref0 psi21]. s

The analysis presented in Sec. (9) is based on the mode approach re-

quiring an expansion of the stresses as a function of 0 in a Fourier series.

In the response to a step wave, the higher terms of the series could be

ignored, and only the terms up to and including a 2 were used. It is

()See Appendix A, Fig. (A-2). As pointed out, the -,teady-state onlution,
for a Mach number so close to unity Wa not be very accurate and the
actual bgo 6tresoes at the points in question will be somewhat lower,
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intereptina to note that results a available from an alternative analysis,

'hich permit checking of the present results over part of the circumference

of Lila tunnel.

The alternative analysis (21] is also approximate; it appli, only

for limited values of the angle lOIS 60", The hoop stress ao toaken from

Fig. (7) of Ref. (211 is plotted in Fig. (9-2). This figure also show$

the peak values of this stress 0-9 found by the present anlysis( ) for

0 = 2250, 5o 600 ad 90.O It is seen that the values for 22.50 a 45O

agree quite well; for 600 the present analysis gives nearly lC. t more stress

than Ref. (211. As the latter becomes more and more approximate as 0

increases, the present theory is believed to be the better value. Finally,

for 0 = 90O, Ref. (211 gives no result at all, but states an extrapolation

that the maximum value of is about 2. The present analysis indicates

that this extrapolation vas not justified, the actual value being about 3.

It is easily seen that the maximum stress -- for a step wave can not

possibly be 2, but must be larger than 2. This can be concluded from the

fact that the dynamie peak stress runt be larger, or at least equal to the

staticpeak stress. The latter is- - 2.52 forv - 0.33 and 2.67 for

V = 0.25.

To find the maximum amplification of stress for a step wave, or for

a decaying wave with a decay constant of more than one half of a transit

time it Is therefore appropriate to us, the present analysis rather than

the extrapolation in (21]. To find the response due to prossure vves vhich

have very fast decays, the present mode approach is not suitoble, but the

approach of (211 could be used instead. Nunerical vcrk for such a purpose,

considerably beyond that presented 1h 1211, would be required..*
* )  M r,

(*) Note that Ref. 21 ] and the present analysis use a different value of
Poisson's ratio, i.e. v = 0.33 and v = 0.25, respectively.

(W*)An estimate of the pressure at early times, gven in (18], pp. 42-43,
is also available and my sometlins suffice.
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it should be noted that situations in which the pressure decay is sufficiently

fant such that the present ana ,.is becomes unsuitable, will occur only

very close t9 Ground Zero, i.e., in a region of extremely high pressuro.

b) Velocities and displacements producel at points in the elastic medium.

The displacement and velocity components w, v, * and i which arc pro-

duced at points in the elastic medium by a plane step shock wave are given

by Eq. (30)-(37), Appendix D. Numrical results are presented for thesc

quantities at points on the cavity boundary, r a a. As in the case of the

atresses, the velocities and displacements produced by a step shock wave

may be used as influence functions to determine the corresponding quanti-

ties produced by a wave with a time varying pressure P(t), by a Duhamel

integral similar to Eq. (9-1).(*) In turn, these results can be used as

input fanctione for the determination of shook effects which are imparted

to shock mounted installations within the cavity. They will be used in

the determination of the acceleration and displacement shock spectra which

are presented in Section (10).

Fig. (9-13)-'g-14) chow the displacements and velocities produced by

a plane step shock wave at the boundar points, 0 a (P and - 90P. At

these points, the moti(u is purely radial, i.e. v and 9 - 0. More compre-

hensive results are given in Fig. (7)-(8), Appendix D, in which the veloci-

ties ir and 1 are given for other points on the cavity boundary.

The rigid body translational motion of the cavity bmundary in which

the cavity maintains its cylindrical shape and translates in the direction of

the incoming atop shock wave, is extracted from te total motion in Sec. (6),

Appendix D. Fig. (9-.15) shows the rigid body displncement, velocity and

lee Andix (B), Part II-a,. for the orMl Kvati9-on of expres-
sions for the velocities and displacements produced at points on the
cavity boundary by waves with Brode pressure inputs.



acceleration of the cavity boundary, under the stop presaure shock waw

loaing. These results may also 'e used as irnfuence coefficients in

DXhame1 integrals to obtain co n e %antities produced by shock

,mves vith time varying pressure histories. Results of this type for

vaves vLth Drode pressure Inpxs, will be used as input functions for

the determination of acceleration and displacement shock spectra in

section (10).



-107-

FIG. 9-1
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10. -SHOCK SPERA FOR INSTALlATIONS IN CYLINDICAL CAVITIES IN EIASTIC MEDIA

In many cases, the various installations which are placed in under-

ground cavities will contain components which are quite shock sensitive.

Consequently, they will require special mountings which are capable of

absorbing the shock effects produced by the pressure loading on the euvity.

Shock spectra for accelerations and displacements are frequently utilized

in the design of shock mounted equipment. The present section presents

typical shock spectra for a) the motion of varioua points on the cavity

boundary, and b) the rigid body (mean) motion of the cavity as a whole.

The analytical forxulation for the dovel~pment of shock spectra has

been presented in detail in Appendix (E). Two particularly uscfu" types

of spectra are considered; 1) spectra for the peak absolute acceleration

which is imparted to a shock mounted installation in the cavity; 2) 3pectra

for the pacv' =elatlve displacement of the installation in the cavity, with

respect to the motion of ;ointo on the cavity boundary to which it is

attached. The former spectra Sive the acceleration design requirements

for a 13!vca shook mountcd i----zalatic .; the !atter give clearance require-

ments for the mounting of the installation within the cavity.

The shock spectra developed in the present Section and in Appendix

(E) include the effects due to the diffraction of the shock wave by the

cavity. Heretofore, shock spectra which wore used in the design of undar-

ground installations were computed from free field input prressures only,

that is from the readings of a pressure gage at a point in a medium with

- no tunnel, and thn effects of the diffraction of the shock wave by the

---- L

N1.
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be determined from the analysis in Appendix (D); the procedure for ubtain-

ing the total displacement under the combined P ead S wve loading, is

identical to that described in Section (9) fir the determination of the

hoop stress.

(a) ShocK Spectra for the Rigid Bo Motion of the Cavity-.

Consider a mass M which is mounted to the boundary of a cavity by

either of the two methods shown in Figure (10-1). In the first case, the

mass is connected to the boundary at many points; each mounting is charai-

terized as being a linear spring. For this case, the relative motion of

any two points on the cavity boundary will be averaged out by the springs

which are connected to the other support points. Consequently, the mass

M will react to the average motion of the cavity which is a rigid body

translation of the cavity in the direction of the shock wave propagation.

In the second case, the mass is connected as rigidly as possible to a stiff

structural lining. Again, the mass will react to the rigid body transla-

tion of the cavity as a whole.

_Fig"re (10-2) shows acceleration and relative displacement spectra

for the rigid body motion of a cavity of radius r - 17.5 feet in an elas-

tic medium where cp = 17,300 fect/sec. The cavity le subjected to a P

wave carrying a Brode pressure input with P0 
= 6500 psi for a 20 MT surface

burst. For comparison, the corresponding acceleration spectrum from the

free field pressures only is shown as a dotted line. It is notod that

for higher frequency components, the free field accelerations are much

larger than those in the spectrum from the analysis of Appendix (E )which

includes the diffraction effects; the difference increases rapidly as the

frequency increases. The difference is due to two causes 1) the
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be determined from the analysis in Appendix (D); the procedure for obtain-

ing the total displacement under the cobined P and S wave lading, 15

identical to that described in Section (9) for the determination of the

hoop stress.

(a) Shok Spectra for the Rigid Body Motion of the Cavity.

Cozid'&C- a mass M which is mounted to the boundary of a cavity by

either of the two methods shown in Figure (10-1). In the first case, the

mass is connected to the boundary at many points; each mounting is charac-

terized as being a linear spring. For this case, the relative motion of

any two points on the cavity boundary will be averaged out by the springs

which are connected to the other support points. Consequently, the mass

M will react to the average motion of the cavity which is a rigid body

translation of the cavity in the direction of the shock wave propagation.

In the second caoe, the mass is connected as rieidly as possible to a stiff

ntiectural lining. Again, the mass will react to the rigid body transla-

tion of the cavity as a whole.

Figure (10-2) ahows acceleration and relative displacement spectra

for the rigid body motion of a cavity of radius r a 17.5 feet in an clas-

tic medium wner up .3 1,71 00 .1O.c. T'^.e cavity is subiected to c P

wave carrying a Brode pressure input with Po - 6500 psi for a 20 MT sur ace

burst. For comparison, 6a: corresponding acceleration spectrum from the

free field pressures only is shown as a dotted line. It is noted that

for higher frequency components, the free field accelerations are nrach

larger than those in the spectrum from the analysis of Appendix(E )which

Includes the diffraction effects; the difference increases rapidly as the

frequency increases. The difference is due to two causoe 1) the
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diffraction effect 1hieh is mxim=m at relatively early times, and thus

affects the high frequency portion of the shock spectrum, and 2) the fact

that the rigid body notion of the cavity produces the shock spectrum for

the configurations in Figure (10-1) rather than the motion of a particle

subjected to the full free field pressure. The spectrum for the relative

displacement of the shock mounted mass M with respect to the motion of

the cavity boundary is also shown in the figure.

Figure (10-3) shows similar results for the same cavity in the elastic

medium. In this case, the cavity is subjected to a P wave with a Brode

pressure input with PO - 2000 psi. Again, a 20 MT surface burrt is consi-

dered. This case is felt to be more realistic with respect to an actual

installation, since it has been shown in Section (9) that shelters in

rock at the 2000 psi contour might be theoretically feasible.

(b) Shock Spectra for the Motion of Individual Points on the Cavity

Boundary.

Consider a mass Mwhich is mounted by a linear spring to a point on

the boundary of the cavity. Figure (10-4) shows the shock spectra for

the motion at the boundary point 6 = 00. Again, the input wave is pro-.duced by a 20 MT surface burst, awid the peak pressure P0 is 6500 psi. It

is seen that the free field accelerations in this case are considerably

lower than the accelerations from the analysis of Appendix (E), particularly

at hign frequencies. This is to be expected, since the presence of the

free cavity boundary gives rise initially to a doubling of the particle

velocity at the boundary point 0 = 0° and consequently, to an increase

in the displacement at the boundary points at early times. Hence, the

high frequency accelerations at the point 0 = 00 are considerably higher

than those obtained from the free field analysis and the more accurate
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analysis which includes the diffraction effects must be used. The spectrum

for the relative displacement of the shock mounted mass M with respect

to the motion of the cavity boundary at 0 a 00 is also shown in the figure.

Figure (10-5) shows the shock spectra for the motion of the boundary

point 0 - 180 under the action of a P wave from a 20 FIT surface burst

with a peak pressure, P0 - 6500 psi. In this case, the free field accelera-

tion spectrum is corsiderably higher than the spectrum including the

diffraction effects; the diffraction actually decreases the displacement

input and consequently the high frequency accelerations.

The motion of the cavity bounda:-y at the points ) n 00 and 0 - 1800

that have been considered thus far is purely radial; the tangential compon-
ent v is equal to zero at all times ( . Hence, the linear oscillator

concept can be applied in determining shock spectra for equipment in the

cavity which is comnected to these points. However, other points on the

cavity boundary will undergo both radial and tangential displaceients

and shock spectra for both directions are required. Consequently, the

shock mounting of equipment to such points must be capable of absorbing

accelerations in both the radial and tangential directions, i.e. ar

essentially "two-way" shock mounting is required.

%c) Conclusions

It is obvious that the most favorable conditions for shock effects

will be encountered if the equipment is shock mounted in the cavity such

that it will react to the average motion of the cavity (rigid body motion)

rather than to the motion of individual points on the boundary of the

tunnel. Such mountings may be difficult to obtain practically. However

(*) It should be noted that this is only true if the S wave effects can

be neglected.
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if ouch a mounting can be achieved) the equipment will be subjected to

shock accelerations which are considerpibly smller than those given by

the free field shock opectra.

In the case of equipment which is attached to a point on the tunnel

circumference, the spectra allowing for diffraction differs considerably

from the free field spectra. The peak accelerations for a point 0 - 09

are considerably increased by the diffraction. However, the opposite

situation prevails at 0 - 180o, in which the shock accelerations includ-

ins diffraction effects are lover than the "free field"values.

In each case, the design accelerations for high frequency components

ere greatly influenced by the diffraction effects of the wave by the

cavity. Consequently, it is felt that the more accurate theory of

Appendix (E), which includes these effects, should be used in the develop-

ment of shock spectra and design criteria.

It should be noted that the shock spectra which have been presented

in this Section as examples, are bued on an input of a sharp fronted pressure

(P) wave vith a zero rise tirw. For the case of a wave with a fiate riae

t i.--p th: 4.ntte-a of the hth frequency portions of the shock spectra would

be substantial.y decreased.
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11. Diffraction of Pressure Waves b:, a Cylindrical Elastically Lined

Cavity in an Elastic Medium.

The stresses and motions produced by the diffraction of pressure

waves by an unlined cylindrical cavity in an elastic medium have been

etudlel in Reference (20] and Appenaicao (C) and (D). It ie of interest

to .ovaluate the effect of the use of a structural elastic lining for the

ca'-Aty boundary. Particularly, thi effect of such a lining on the strength

of the cavity as a whole 2.nd on the boundary displacements which are the

input functions for the determination of shock spectra for installations

within the cavity, must be studied.

The problem considered is that of an elastic shell in an infinite

elastic medium under the action of a plane step pressure wave which travels

through the medium and envelops the cavity. A method of solution which

utJiizes the solution for the corresponding unlined cavity problem as

influence coefficients can be used to obtain the corresponding results

for the elastically lined cavity. Such a method has already been applied

successfully for a radially oymmetric problem in an acoustic medium (22].

The generalization of this method for the preaent problem is considerably

more complex and represents a major computational effort. This effort is

currently under way; consequently, only an outline of the method of solution

is presented in this Section.

An infinitely long clasticelly lined cylindrical cavity in an infinite

elastic homogenecus and isotropic medium is acted on by a plane pressure

wave whose front is parallel to the axis of the zavity. The shock wave

propagtes through 'he medium with a constant velocity cp and envelops

the cavity [Fig. (11-1)).
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a) Determination of the r'guations of Motion for the Shell.

The response of the elastic lining*) to the transverse shock wave

is studied by considering the m'ell in vacuo as a separate structuro

responding to the dynamic forces exerted by the surrounding elastic

medium and by the incoming shock wave. Using the modes of free vibration

of the shell in vacuo as generalined coordinates, its response can be

qxpanded in terms of the infinite number of these modes. The mode shapes

and the corresponding frequencies that are required have been develope.o

in Reference 123). Let the displacement of the shell be written in terms

of the generalized coordinates j,, %~ and %n (n ~i0):

w(,t). 0 jo(t) +~[Zqn(t) + (t)] coo no (-1)

lrt%(t)).L' -

n tl

The quantities qn are the coordinatea for the primarily inex.%nsional

motions of the shell; the quantities -o and ie aro the coordinates for the

primarily extensional motions.

The coefficient d is given by the relationn

n -m - . [ a ] I ' lf n ,'+ ( 2 jL-n j3 \ I + ~ 2-*An . 3- - ( 11 .3 )
a Ai nLaA

For properties of practical interest and for the lower modes (n < 5),

there is little coupling between the bending and extensional effects

because a2A >> I.

i) The lining is nov essentially an elastic shell in an infinite elastic
nedium.



I
For such case, dn  n and the frequencies and are given by

w n2 E (n+ ) n (11-4)
n ma 4(a +1)

% -A (n2+l) (.-)

where 3-- # I and A are iuhe moment of inertia of the cross section
1.V

2

of the shell with respect to a principal axis at right angles to the p-lne

of the ring and the cross sectional area of the ring respectively, and m

is the maos per unit area of the elastic lining.

The equations of motion for the shell may be written in terms of the

generalized cooidinates qn and

"+ 2  Q n - 1, 2, 3, ... (11-6)

-" 2- Qn
'I +n -O, , 2, 3, ... (11-7)

where 0, and , are generalized forces and n and mn are the generalized

n

- 2( (+1.9

The generalized forces Qn(t) and %(t) will be evaluated later in this Section.

For cases in which the coupling between t.he bending and the extensional
motions is significant, the frequencies must be determined from the
expressions given by Eq. (A-8) of Reference (2 ].
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b) The Response of the Boundary of an Unlined Cylindrical Cavity -

Determination of Influence Coefficients.

Tha displacements at the boundary of an unlined cavity to a step

pressure wave have been evaluated in Appendix (D) of this paper.

E.ssentill y, the results were obtained by the addition of an effect

produced by the free field component of the incoming sk.ock wave plus

the effects produced by the application of corrective boundary tractions

which are required to produce a traction free surface at the cavity

boundary. For the present purpose, the free field components must be

expanded into a Fourier series in 0, and added to the corresponding

components from the corrective tractions. Finally, the total motion of

points on the boundary of the unlined cayity is obtained in the form

4, ZFn(t) cos nO (1i-i0)

n-O

v On( ) sin nO (11-ll)
n-I

Two additional coefficients are required from the unlined cavity

problem. They are respectively! 1) the boundary displacements wA(t) coo nO

and vA(t) sin no produced by the applied boundary tractions errn " U(t) cot nO;

0rOn  0 (Fig. (11-2)]; 2) the boundary displacements wB(t) coo no and

V B(z'sin u produced by the applied boundary tractions a.. w 0;
n

a r n - U(t) sin no (Fig. (11-3)]. Thes3 quantities can be evaluated from

the results o1 Appendix (D) and will be used as influence coefficients in

Duhamel integrals for the analytical determination of the generalized

coordinates %(qt) and %(t).



c) Derivat~on of,, Interal Equations for thu Evaluation of the Generalized
Coordinates qn(t) endSj(t).

Consider an elastically lined cavity in the medium under the action

of the step shock wave. The total radial and tangential displacements of

the shell boundary can be derived from the superposittcn of the corresponding

displacements of the unlined boundary plus the displacement produced by

unknown radial and tangential forces X(t) and Y(t) respectively which are

required to force the unlined cavity into a compatible displacement with

the elasticall lned cavity. The forces X(t) and Y(t) (Fig. (li-4)] are

expand d into a Fourier series in e:

X(t) X t coo no (11-12)
n=O

Y(t) = UZYn(t) sin no - (11-13)

The compatibility equation on the radial and tangential displacements of

the shell can be written in terms of the generalized coordinates qn(t) and

Z(t), and the torcea . ,(t) and Yn(t). The sum of the displacements due to

1) the shock wave on the unlined cavity; 2) the applied boundary tractionb

arr a Xn(t) cos n, UrO - 0; 3) the applied boundary tractions aOr 0 0,

Oro a Yn (t) sin no, must be set equal to the actual displacements of the

shell itself (Eq. (11-1)-(2)).

The radial and tangential displacements produced by the traction

Orr - Xn(t) 0o0 "a 'ro - , aplied to tho cavity boundary, can be evalukte4

in terms of the known displacement coefficients WA(t) and vA(t) from the

Duhamel integrals* ) :

The derivation of formulas of the type given by Eq. (li-14)-(ii-15)
is shown in detail in Reference (221.



t
w w,--rX

0

t
S (t-')d 1

0

In a similar manner, tho radial and tangential displacement due to the

boundary tractions arr - 0, ar8 . Yn(t) sin nO, are evaluated in terms

of the known displacement coefficients vB(t) and vB(t) from the DuJaiel

integrals:

0- / % V(t- )d 
(11-16)

The compaibility equation for the sheli displacements thuB become:

FV). - f i V~-

v dJr dY r) (3--37

Eq. (11-18)-(11-l9) are a pai r of coupled integral equations on the

unknown e~tic forces X(t) and gn(t).

0 0

The geni.ralized forcea +W e d(t) vhich appear in Eq. (11-6)-(ii-7)

are now determined a functions of the ukown forces Xn(t) con nO and

yu(t) min uU. A set of two simultaneous linear equations in %I(t) eA Yn(t)

are obtained. These equations are then solved simultaneously for Xn(t) and*

Ya()as functions of the generalized coordinates qn =



X.(t) g ~ (q., %, CD. %) (11-21)

Substituting Eq. (3.20)-(11-21) into Eq. (.1-18)-(11-19), a set of coupled

integral equations on the generalized coordinates qn and are obtained.

These equations can be solved by numerical methods, using finite

difrerence theory. Essentially, the integrals in Eq. (11-18)-(11-19) are

replaced by finite difference summations from vhich recurrence formulas

for the coordinates o(t+k) and %(t+k) are obtained in terms of their

known values at previous time steps.

Once the generalized coordinates qn and % are evaluated, the displace-

ments of the shell are computed from Eq. (i1-1)-(11-2). Similarly, the

shell velocities and accelerations are also computed.

The direct stress (hoop stress) in the shell Is evaluated from the

relations

E

0 u- (1-2.
1T

S(w + v). (11-23)

Substituting Eq. (11-1)-(11-2) Into the above equations, the n ' c€ponont

of the direct hoop stress becomes

Z 2 ,*- - (n +1)qn Cox no(f-1)
11 (-V )&
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The nt h component of the flexural stress aB in the shell is given by

n n a ( + %) cos no (11.25)

vhere d is the distance from the neutral axis of the shell to its extreme

fiber. The total hoop and bending stresses are evaluated by summation of

the components aoo n and aB respectively.a n
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12. CONCLUSION AND SUARY -- DIFFRACTION EFFECTS

Section! (9)-(ll) have considered three basic theoretical problems

which my be of use in the anyaej and design of underground structures

and their contents. These problems are respectively: 1) the streoss

velocity and displacement fields produced in an elastic medium by the

diffraction of plane P and S iavos by an unlined cylindrical cavity;

2) the determination of shock spectra for installations that are mounted

in cylindrical cavities in elastic media; and 3) the stresses, velocities

and displacements for the case of the diffraction of plane P and 6 waves

by a cylindrical elastically lined cavity, i.e. a structural shell which

would house an installation.

The shock waves have been assumed to have plane fronts which are

parallel to the axis of the cavity. The plane wave solutions can be

applied directly to the superseismic range (V > cP). Moreover, they

can be used to construct by superposition, the solution to more general

diffraction problems in which the otre'as field produced by the surface

explosion does not consI1 pl e . as but is eongidernbly more com-

plicated. The problem of the envelopment of the cavity by a shock wave

with a wave front perpendicular to the axis of the cavity, has not as

yet been treated, and remains to be analyzed.

It should be noted that the limitations on the use of an elastic

theory which are noted in Part (1) also hold for the present cases. The

application of the theoretical results obtained in Sections (9)-(1x) is
valid only in those portions of the medium in which the assumption of

linear elasticity is tenable. It may be inferred fron Appendix (F)

~that this Is not an unreasonable rassumption outside of the crater region

in a good granite rock.

I
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Specific conclusions on the use and upplicability of the various theo-

retical results are given in each Section and will not be repeated here.

It may be noted hovever that for a press3re wave with a stop pressure

input, ,the hoop stresses produced on the boundary of an unlined cavity are

essentially quasi-static and reach their maximum values after 3-4 envelop-

sent tims, i.e. the dynamc amplifications are nmall percentage vise.

Results for vaves with decayiag pressure-time histories are easily derived

from the corresponding step pressure results by reans of IlBsamel integrals.

Mhe velocities and displacemcnts of the cavity boundary are used as

input functions for determining acceleration and relative displacement

frequency spectra for shock mounted installations in the cavity. %Jie

shock spectra which include the diffraction effects and are consequently

more appropriate differ considerably from the free field spectra, particularly

in the high frequency ranges. In addition, it appears that the most

favorable conditions for shock effects will be encountered if the equipment

Is chock mounted so that it will react to the average (rigid body) motionI] of the cavity.

Results for an elastically lined cavity in an elastic medium cuU be

obtained from the corresponding solutions for the unlined cavity. The

theoretical method leads to a set of simultaneous linear integral equations

which may be solved numerically. This large effort is currently under

way, and it is hoped that the results will be available in the near future.

It is felt that the theoretical problems considered here represent

a basic first theoretical development leading to a rational design procedure

for underground structures. A great deal of further theoretical study in-

volving diffraction effects in dissipative and granular (compressible) media

will also be required for locations of practical importance and interest

in which the elastic theory will not be applicable.
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Appendix A

STEADY STATE RESPONSE OF AN ELASTIC HALF-SPACE DUE TO A SURFACE PRESSURE

MOVING WITH SUPERSEISMIC SPEED.

This Appendix considers the plane strain problem of finding displace-

ments and stresses produced by the uniform motion of a distributed normal

load p(t - x/V) on the surface of an elestic half-spa.e (Figure A-1).

The speed V of the loading is greater than the propagation velocities

c and cp in the medium. It is assumed that the load has been acting for

a sufficiently long time such that a steady state situation is established.

Figure(A-l)depicts the geometry. The coordinate system x, z is fixed

in space, while 5, F is the coordinate system with origin at tb front of

the load and moving with the load with constant velocity V. (If the two

coordinate systems coincide at t - 0, then x - Vt - Z - 1.) The dis-

placements and stresses are obtained by superposition from the solution

for the uniformly moving concentrated line load, Reference [8]. The

results listed hereafter apply for the case where the two Lame constants

are equal, ? - . The horizontal and vertical displacements, u and w,

respectively are

u . [KIP (t- .x + zcotcL) + K ~(t + coto)u- V " 2 co" P (t

v(t X + Zo KP(t X+zcotp)

The stresses are:

Cz (eot 2  1) Klp't - X + zcot - 2cotOK2p(t - x + zcoto) (2)•z V •
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a~~ co 2zMcotl

xz oP-1) K2 P v(t - ° 
t)) I (2)

ox - (3+ cot2=) K1  p(t -X +vzcota )+ 2cotI3K2p(; . x +ZC~tB )

where
G in-i V ci' .C--* i --!~ - 5in-1Xv _

1e I
- ot2 Z (-]

3 cot2 -
K, L cot. + cotcot22

the function P is the integral of the function p defining the applied load

P(J)- vf~p(t)dt 4
0

The shear wave velocity and pressure wave velocity are respectively c and

cP, The pressure p is positive when acting in the positive z direction,

an a andCzz X ar n-c- vei -nie
It is also convenient to have expressions for the strengths of the

plane P-and S-waves generated by the moving load. The strength of the P-wave

is best defined by the normal stress a at right angles to the plane of its

wave front. (See Figure 1 ) Similarly, the strength of the S-wave is

defined by the shear stress - in the plane of its wave front.

For - p , the values of a and v are:

+(t X+Zoot 3(
) - 2 p(t . X V  eot 6

K3 . +2cos2% + sinfta .
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A plet of the quantities u/p and re/p is shown in Figure (2). It

is seen trt,, except near V/c . 1, the ratio Ia/pin nearly equal to

ui I V/Pfvjes appreciably, its mamum being about 0.60.. The

ooniequonos of the sensitivity of tha solution near V/cp - 1 are die-

cussed In the body of the report.
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Appendix B

SURFACE WAVES IN AN ELASTIC HALF SPACE

At largo distances from a disturbance, the major effects near the

surface are due to Rayleigh Waves. This has been discovered theoretically

by Rayleigh and is well confirmed by seismological experience. It is

the purpose of the present paper to give suitable expressions for the

determination of Rayleigh effects due to transient normal pressures on

the surface. Specifically, closed form solutions are presented for the

effect of a concentrated load, suddenly applied and maintained thereafter.

Any general pressure distribution may then be treated by integration in

space and time.

The complete effect of a suddenly applied concentrated load has been

t-La by Pekeris LI, e j , who also obtained response cLwves for certain

displacements requiring lengthy numerical integrations. As noted by Pekeria

(2), and long ago found by Somnerfeld (3], the surface effects can be

obtained by the transform approach as contributions of certain poles,

ignoring branch integrals which occur in a complete solution. This ap-

proach is used hereafter. Introducing the clearly appropriate simplifi-

cation of considering the depth small versus the radial distance from the

force, relatively simple closed form expressions will be obtained for

stresses and displacements.

By superposition this concentrated force solution can be used to ob-

tain approximate solutions for various types of distributed pressure load-

ings on the surface of the half-space. As an example, expressions are

given for the displacement and stress components caused by a surface pres-

sure (with an intensity varying in time) uniformly distributed over a

circular disk of Increasing radius.

*) References are listed at tht end of this Appendix.
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Anitlysis

The geometry of the problem is depictad in Figure(l)where a con-

centrated force P(positive dowvnard, and varying with timo as the step

function) acts on the surface of'an elastic half-space. Reference I]

(Equations (3), (9), (16)-(19)) gives the Hankel-Laplace transforms of

the potentials from which the transforms of the vertical and radial dis-

placements, uZ and Ur, respectively may be derived:

a a+iw

uZ(r, t) -- s- fiJ J o(tr)% [(2J2 + k2 )e'kmz+Pt -
0 a-i- 22 e .t -]zp ak] -

M (I) p (3.)

- + ku
ur(r, t)- P jdt j J,(9r) [2t2 + k 2)e ka+pt-r 2

0 a-i.. (2j 2 + h2)1/2(t2 + k2)1/2 e-koz+pt] L i 2

where

2 _2)2 k2 .() 2  C2 .2 . 231
(C P P 30

2 h2)/ k1/2 (t2 k2)1/2 ('a)

k(m) ( + h ) kO +

M(J) (2E2 + k2)2 -4k 2 t2a3

For simplicity, similar to [I] , the two Lain6 constants have been set

equal, ?. X . In order to insure decay of the displacements at infinity,

the branch of the square root must be chosen to yield a posit'-va real part.

The approximate solution for the Rayleigh phase is obtained from

Equations (1) by utilizing only the residues of the integrals at the
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(Reslaigh) poles, p t with7. (E)(3 +,/)l/2 ( reference [2] ).7

The contribution from the poles is:

2 "' ) 1/2 , 22

UL i( 7 ) .l)/(2)

UL ' l e( -27) [ . +71  2(7' 1)1/2(7 2 1)/2 -

r r kL vJL (v-i )! )1/2 Fo
where, again, that branch of the square root must be taken which yields

a nositive real part, and where

W= - + i)- (Y2 .1)1F1

v ,, + i - 1)1/29/ (2a)

Since only the Rayleish phase is being considered, shcse expreauions are

only applied to shallow depths ( << 1) and to values of the time near the

arrival time of the Ra1ligh wave (I a 7). Using these restrictions, Equa-

tionb (2) may be approximately simplified to the final form:

j~(
2  1/2 -1Fl 72 ~/2 22 z-1/2j

Ur K1  1 -eF 27 2) zjA+ 2(y72 1)1/2 (72 - 1)1/2 Z;1/2j (3

where

K•- 3 (3a,)

, + i ( -2 _)1/2

3

Z2- + 1(7
2 .- /
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From those expreseiona for the displacements, expressions for the atres

components may be derived by routine differontiation where 1P

v 7 is used again:

0,-K 2 (272. 1)2 Re FV.3/2 .- i

a -K 2 (-2y)(1y2 -1)1/2 IM [3/2 . ;1 (4~)

-ee y ( I( 3/ fl(

a " . (1 - 2y2 ) Be [(.2.]) z-3/2 + (I 2y2) Z3/i1

where
3P ,(4a)

The numerical evaluation of Equations (3), (4) is simple. Vot only

are the expressions in closed form; but each of the responses) for a

given mediumis solely a function of a single parameterp the non-dimen-

sional time 1. Figure(2)shove as example the vertical stress azz

(note " " ~- " ).

Equations (3) and (4) may be utilized to obtain approximate solutions

for various types of presisure loadings on the surface of the elastic half-

space. Consider as an exemple the loading depicted in Figure(3 A nor-

mal load of intensity p (varying in time) is distributed uniformly over

a circular disk of inoreasing radius R.. Assuming further that R << r,

the solution may be written .- ) 1/2

um. K3 f P( ,r) d'.,f ,  [ "2(' " 
.J .; . dx (mn .r " (r)

0 RT



vhere

X, 3P

UZU (.2 - 1)1/2 1-. 272) i13f2 + 272 7?!2j
3)1/2

Ur 7 Re 1 - 272)K 3/2 + 2(72 _ 1/2 ( ._ 1)1/2 g3/2 (,)

-i=_ (o _ r _ O _ 7x)+ i( 2 _ 2)1/2
z 3

i2 -1 ( t - 7 r - cT - y ) ,+ 1( 2  - 1) 1/ 2

t R(." 1/2

where

K4= . 9 Q
3.6 j y wl/2z'/2

~ u(y~-1)2 Rti5/2 -~52 ~

~-27 (72 1)1/2 Im [5/2 - -i512
Frz 3 2

-doe~~~ 1-2/)R 5/2]

Frr (1 -27) He F(22+ -V/2Z+(1- 227)ZI5

Equations (3) and (4) break down for z . 0, and the integration procedure

(5), (6) can therefore not be used for the surface z = 0 either. The

determination of responses frcm transient distributed loads for z a 0

requires a separate approach starting from the transform expreasions for

th~se loads, or equivalent procedures of goinS to the limit z,-.-- 0.
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The computations wesr made, by necessity using an IBM 704 cocputer.

The cma-ete numerical analysis as well as the detailed ccaputer program

will be presented in detail in a forthcoming paper (4.

Results were obtained at various depths below three surface pressure

contours for the 20 M.T. surface burst. First, an elastic medium in which

C - 10,000 ft/sec., v - 1/4 was considered. The pressure contours chosen

wore at R a 2000 ft. (10000 psi contour], R - 3200 ft. (2,000 psi contour)

and R - 500 ft. (700 psi contour].

rigs. (10)-(12) show the attenuation of the peak stresses arr' 100

and a with depth at the 2000 ft., 3200 ft. and 5000 ft. distances from

Ground Zero for the elastic medium with c a 10,000 ft/soc. and a weight

of 167 lb/ft3 . These curves are useful in dctermining the depth at each

location below which Rayleigh wava effects are small and may be neglected.

The reader Is referred to the discussion of the determination of Ryleigh

wave effects in Sec. (3) of the report and to the results presented in

Fig. (3-10)-(3-13).

The stresses produced by a 20 M.T. surface explosion on a slower

elastic medium in which c - 6000 ft/soec. but whoaso weight was the some,

i.e. 167 lb/ft., wero also obtained for R a 3200 ft. (2000 psi contour]

at various depths. Fig.(13) hom the attenuation of the peak stresses

Orr$ o09 and azz with depth at this location.

Some typical stress versus time histories for Rsyleigh effects are

shown for art, agg and a., at the indicated range and depth in Figs.((l4)-(16).
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APPENDIX C

DIFMACTION OF A SHEAR WAVE (S WAVE) BY A

CYLINDRICAL CAVITY IN AN ELASTIC MEDIUM

I INTROMMCTON

An infinitely long cylindrical cavity in an infinite elastic homogen-

eous and isotropic medium is acted on by a plane shear Nuve whose front is

parallel to the axis of the cavity. The shock wave propagates through the

medium with a constant velocity a. and carries the shear stresses vU(t)

By means of a suitable transformation of coordinates, the problem can

be solved by a procedure which utilizes the results obtained in the solution

of the problem of the diffraction of a P wave by a cylindrical cavity in an

elastic edin. An integral transform technique is used to determine the

stress field produced in the medium by the diffraction of the incoming

shock wave by the cavity. Expressions for the hoop stress o,, , the radia'

stress arr and the shear stress OrO are derived and numerical results are

presented for the hoop stress , 0 at the cavity boundary. Although the

problem is considered for S waves with a step distribution in time, the

results obtained for this case my be usad as influence coefficients to deter-

mine, by means of lahamel integrals, the stress field produced by waves with

time varying pressures.

II CENERAL PROCEWRE

Consider an infinite elastic medium which does not contain a cavity.

ine stresses arr , tO8 and a., produced by the incoming shock wave at

points lying on a circle of radius "a" [Fig42)] are given by the expressions



Ii

Orr - "1 sin 2 ()

are ICos 2~ (2)

ve - si . n 2 (3)

The superposition of the tractions

a rr " su n 2 (4)

arO = - coo 2 (5)

which are equal and opposite to those given by Eq. (1) and (2) on the

surface r a a, produces a traction free surface which can be considered

to be the boundary of a cavity of radius "a" in the medium. The total

atress field produced by the incoming 8 wave is obtained by superimposing

the free field stresses (Eq. (i)-(3)1 an& the stresses produced by the

application of the surface tractions arr and or8 (E q. (4)-(5)] to the

boundary of the cavity.

A transformation of the coordinate ; can now be made. This transform-

ation brings the applied tractions of Eq. (4)-(5) into coincidence with

those of Eq. (4)-(5) of (2o]. Consequently, certain of the formul and

Influence coefficients developled in (201 for the case of an. incomin5 P Vave,

my be used to obtain similar results for the case of the S wave. Letting,

Ing. (3)4, ( 6) - "/4 (6)

and substituting Eq. (6) in Eq. (4).(5), the tractions become

arr U.Isin 2(e - /4)- rcomo (7

are a - v oo 2(6 - 4/4), - v sin2 (8)

I+
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he boudaai trectivno r an 0ri (. (7)-(8)1 are expanded irto a

Fourier Series in 0 [Figl3b)]:

arr Z.5n(t) con nO (9)

ri
a " ns(t) sin nO (10)

vhere + a(t)

a n(t) -fua (0) coo nO dO (11)

-l - a(t)

x/4 + ,(t)

bn (t) - ?,or(O) sin nO dO (12)

and

&(t) cos'l( - a..) (13)

Substituting Eq. (7), (8) into Eq. (11), (12), the expansion coefficients

become

During envelopment t < a
- CB

a (t) W i _C__n +)_ I] sin (14)- anB~t)' - 2-n ' 2+n _ -

b- [sin (2-n) + sin (2+n) nx
n2(t)  + 2+n sin Zr (15)

After envelopment t >

%8(t)u b (t)M - 0 n 2 (16)

a2a(t) - - b2 s(t) - (17)
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It should be noted that there is no contribution from a aeries term for

n 0 0, and that since only the series term for n = 2 has a non zero

coefficient after envelopment, only the n w 2 mode will contribute to the

long time (static) solution for the stress field in the medium.

The plane strain problem for the stress field around a cavity of

radius "all which has the surface tractions Orr and are n applied to the
a n

boundary r w a, is now coneiderad. The ;urface tractions err and are

are given by

yrr n a a ns (t) cos no (18)

Cr n bns(t) sin nO (19)

As in D01, to make the problem more tractable, the tractions errn and

arO are first applied to tho cavity boundary as step functions in time:
n

a rr ;.U(t) coo nO (20)
n 

itcr+ =. -in nO (21)

n

The stress field components produced by the pressure inputs Eq. (20)-(21)

are evaluated in Section III of Reference (201 and are used as influence

coefficients in Duhamel integrals for the determination of the corresponding

components produced by the true boundary tractions of EQ. (18).(19). For

convenience, the auxiliary problem is solved for the following two sets

of applied boundary tractions,

a U(t) cos nO

Ore ,,20

0

Orr. * 0

(23)

Or n a U(t) sin nO
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As an illustration of this procedure, consider the hoop stre2s a., at

the cavity bound2ry. Lat the quantities 00 and 000 be the time
n n

dependent portions of the hoop stress o at r n a produced by the

applied tractions given by Eq. (22) and (23) respectively. The correspond-

Ing stress components due to the boundary tractions of Eq. (18)-(19) are

given by the Dahamel integrals:

tCoon f _ans ( n) Coon (t-j)1dvj (24)

0

°

6 n,(1) 00 ( (25)
go j n n

0

The total hoop stress a., produced at the boundary of the cavity by

the incoming S wave is given by the superposition of the free field stress,

Eq. (3), and the stresses from Eq. (24)-(25).

000(t) - - T coo 20 + (t) + 0on (t) coo no (26)

The method of superposition can also be used in a similar manner to evaluate

the stress field, arr 1 000 Oro at points in the medium beyond the

boundary of the cavity, i.e., r > a.

-I1 AUXILIARY PROBLEM - STRESS FIELD PRODUCED BY THE BOUNDARY TRACTIONS

errn  U(t) cos nO and ar0n " IU(t) sin nO (Fig. (4)1.
a .

The stress field produced by the boundary tractions arrn 0 U(t) cos nO

and ore kU(t) sin nO has been determined in [W], Section III, and the

analytical results are given in detail in that reference. The hoop stress

component, a0., can be evaluated from an Inversion integral of the type
n



(r, ,t) ,O-7 i, t (2t
n i f I(r.E)e (
Cos n o t "LFB+DE7

--- ±7

where

E [+ kE] [2I :r(2(,I) )(2n2 + 2n)- ( + 2)(2) +

(,,, 2 C (28)

+~ (Ck)- D) [2nn+) -H2 Oa crn )
r 2 cr n- 0 ( ]

and

F u[2n(n+l) - U 2H (2)(t) - 2t H ( ) (29)

2

( 2( ) f( t),.B -2n(i+2) + -2 ! H'( t) 11~ ~(2 ) (30)

Dw 2n(n+l) H (2)() - 2n t Hn'l(I, (31)

2,(n+,) H.2)(_ j) . 2n H()(2 t)

2n- nR (32)-n "as- as n-1a

l r n C r - n

Similar inversion integrals for d -and are presented in [20].

The integral of Eq. (27) has been evaluated in Section (IV) of (20] for

the hoop stress a0 at the cavity boundary, r - a. 'The hoop stress 800 is
n n

given by the relation

- - - +R+ I]cos nO (33)

where R and I are given by Eq. (75) and (71) of [19] respectively.
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IV MUMIICAL RESULTS AND CONCLUSIONS

Numerical results are presented for the hoop stress at r = a, which

is produced by an incoming plane sher (S) wave with a step pressure dis-

tribution in time. An in the case of the P wave, it was found that the

maximi values of the stress are not materially affected by the early-time

stress contributions which come from the coefficients and '1
n n

l larger than 2, and consequently, the series in Eq. (26) m, be terminated

arter the n = 2 term for computational purposes. Morcover, only the

contribution from the n = 2 component combinee with the free field stress

in Eq. (26) to give the asymptotic long-time value of o0 .

Fig. (9-8) shows the hoop stress 069 at the cavity boundary for the

locatIons 5 a O and 4 I50.

The hoop stress produced by the step shear wave my be used as an

influence function to determine the hoop stress produced by a wave with

varying pressure-time Listory by means of the Dahamel integral of Eq. (9-1).

I
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SHOCKWAVEw \\SHOCK WAVE FRONT

F I GI GEOMETRY OF PROBLEM

x

y

F I G.2

r

Or~kl(t)sinnfl
0orr 1J(t)cosflO

F
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II

I (b)

F IG.-3
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ApendixD

DISfLACDM AN D VELOCITIES PR~ODUCED BY THE

DIFrACTIOH OF A PR1ES8UAV WAVE By A

I O~LN tICAL cAvIY IN All ELASTICI I.EDIUM
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IO., CLTtX .

The folloving nomenclature Is used in this paper.

,r polar coordinates, see Figure ().

u(r, 0, t) a displacement vector of a point in the medium.

vr, 0, 01 radial and tangential disiplacements or a point
v r, 6, t) in the medium. (Noto that a positive displace-

ment v is outward).

0= radius of eylindrical cavity.

an(t), bn(t) a Fourier serien coefficients for expansion of
stresses arr anda r9

cp, en Propapation velocity of dilatationnl and shear
waves respectively in medium.

f C f cdfn, d; hnI n Fourier series coefficients, See Equations(lO2)and (103)

d(t) - Time dependent coefficients for rigid body motions.

g 6, , t)l function of r, 0, t and corresponding transformed
1(r, 0, n) function with respect to time.

F, B, D, E - functions (Sec Equation (59)-(62))

.( 1 )  ,(2) 11 7- 4'-- -'! "'..c'ton" 1 rt nd necond kind of
"a order n.

I(t, r), Q(t, r) Functions %ppearing in transformed displacements
and velocities.

In(y), K.(y) a ndified Besel functions ofT he ziru and second
kind respectively, of order n.

kr, ke  = unit vectors in r and 0 directions respectively.

k = coefficient.

t = time

t delay time (Equation (8)].

P(t) = variable pressure-time history of incoming
pressure wave, see Section (VII).

U(t) unit step function.
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L(t) angle Cof Czvelopoent.

n a numbrr of circumferentinl wves, integer.

- ratio oi arrcso components in incoming Y,
sea Finuref().

- Lamd constont.

- shear mdulun of medium.

V - Poidson'D Ratio

ep

P =9a density of medium.

arra r9 a radial and shear stresses respectively at a

point in the medi=um.

- stress intensity of incoming wave.

0 ( , 9 ta potential fu~nctions of reflected and radiated
8(r, 9, raves in the medium.

fl transform variable.

Additioral symbols are defined as they occur in the text. Subscripts and

dota used with displacement and potential functions indicate differentiation;

e.g. U~ -I U tc.,r
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1. INTRODU1CTION

An Infinitely long cylindrical cavity In an infinito elastic homog cno-

cue and isotropic medium Is acted upon by a plane chock wave whooe front

is parallel to the axis of the cavity. The shock wave propagates through

the medium with a constant velocity cP and envelops the cavity (Fig. (1)].

The direct stress components oU(t) and coU(t) which are respectively parallel

en! to the direction of wave propagation, are carried by the

shock wave.

An integral transform technique ".a used to determine the displacements

and velocities produced at various points in the medium by the diffraction

of the incoming shock wave by the cavity. Expressions for radial and

tangential components of the displacement and velocity are derived and

numerical results are presented for these quantities at points on the

boundary of the cavity. Although the problem is considored for preesure

-=vac --th - -- i-tribution in time, the resultn obtained for thin case

mey be used as influence coofficient. to datermineby means of Duhamel

integrals, the displacements and velocities produced by waves with time-

dependent pressures.

II GENERAL PROCEDUME

The stress field produced by the diffraction of a plane step shock

wave by a cylindrical cavity in an elastic medium was evaluated in Ref. [20].

The present paper utilixes a similar approach in determining tht displacements

and velocities of mass points in the elastic medium. Essentially, the

displacement and velocity components at any point in the medium are obtained by
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superimposing the free-field velocity and displacement component*, i.e

those produced by the pressure wave in the medium vith no cavity, and

the velocity and displacement components produced by the application of

corrective tractions at the boundary of the cavity in order to make the

boundary surface traction free.

a) Free-Field Velocities and Displacements.

Consider an infinite elastic medium which does not contain a cavity.

The etresea 7rr 4nd ar produced by the incoming shock wave at point: Iying

on a circl- of radius "a", [Figure (2a] are given by the expressions

arr - acos2e - c zin2 ] (1)

ma = C sin 20 (2)

The radial and tangential components of the particle velocity of

points in the medium behind the step wave front are given by the relations

S cos (3)

PC 0

4f -- sin 0 (4)

The displacement uf of a point in the medium contains two components

!f - vf(rO,t)kr + vf(r,O8t)kO. (5)

where, by integrating Eq. (3 )-(4), the radial and tangential components

-if the displacement are given by

wf(r,O,t) - - -cos 6'(t-V*) (6)
PCp
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v1 (rOt) - -2-in ) (tt*) (7)
PCP

where the time t is measured from the arrival of the shock wave at the

point r a a, 0 - 00 (Fig, (3)] and the delay time t* is given by

t* a - r coso ()

Op

b) Velocities and Displacements produced by corrective boundary tractions

aMplied to the surface of the cavity, r . a.

The stresses produced in an infinite elastic medium with no cavity,

at points lying on a circle of radius "a": are given by Eq. (1) - (2).

The superposition of the tractions

a rr [ o2G - t ain2e] (9)

0 rO~ [ i- sin 29 (10)

which are equal and opposite to those given by Eq. () and (2) on the

surface r - a, produces a traction-frau surface which can then be considered

to be the boundary of a cavity of radius "a" in the medium. The total dis-

placement and velocity field produced by the incoming pressure wave Is

obtained by superimposing the free field quantities (Eq. (3)-(4), (6)-(7)]

and the velocities and displacements produced by the application of the

surface tractions of Eq. (9)-(10) to the boundary of the cavity.
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Proceeding as in Ref. [1], the boundary traction a rr and arO

(Eq. (9) * (10)] are expanded into a Fourier Series (Fig. (2b)]I

ac(c)
Or -- +  an(t) coo nO (11)

r Zbn(t) sin n9 (12)

n-I

where (t)

an(t) a o[r(e) cos nO de (13)

a.(t)

b (t)u- Io (0) sin nO dO (14)
n 9 rO

For times whioh are.leas than one full envelopment, 1.-., t < 2a
CP

the angle m(t) is given by the e.pression

i(t) -Cos-1 (Ct )

For t > the an61e m(t) - r. Substituting Eq. (9) " (10) into
C,Cp

Eq, (13) * (14), the expansion coefficients become:

Wuring envelopment t < 2a
0

aet +a(.c (,(+,,) sin 2%i] (16)

[nt a sin nmco2 atsn'a) +(j1) (17)ma

______ n) sin (2-n)a. 4 Sin (7

b (t) - - (1+g) [in2 -c sinc2+n)aj (18)I+
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After envelopment t > LM
C

ao(t) ,+\
0 -- , (i)

a(t) -bn(t) 0 n o and 2 (20)

2 (t) b() 2~)(2)-

For a wave with a plane wave front, the parameter C becomes

. (22)J°V

The plane train problem for the displacement and velocity fielde

around a cavity of radius "a" which has the surface tractions Orr end
n

Oro applied to the boundary r , a, is now considered. The tractions
n

rrn  and aren  are given by

ar an(t) coS nO

r n
(23)

are - bn(t) sin nO
n

2arr a ao(t) ; Uri 0 0 (24)
0 0

To make the problem more tractable, the tractions a and a are first
n n

applied to the cavity boundary as step functions in time:
Orr a U(t) cos nO (25)

n

or - k a U(t) sin nO (26)

are

a U(t) (27)
rr 0

where k is an arbitrary number which is used to identify that part of the

solution that comes from the UrOn traction.
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The displacement and velocity components produced by the traction inputs

of Eq. (25) - (2) are evaluated in Section (jl~and are used as Influence

coefficlents An Dahamel Integrals for the determinatlon of the correspondins

components produced by the boundary tractions of Eq. (23) - (24). For

convenience, the auxiliary problem is solved for the following three sets

of applied boundary tractions

arrn  U(t) co nO

(28)

rOn  0

" .0
rrn  

0

ar6 U(t) sin no

Orr0  U(t) OrO0  0 (30)

To illustrate the procedure, let the quantities Vn vn  and vo

represent the r and t dependent portions of the radial displacement at

any point rO, produced by the applied tractions of Eq. (25) * (27)

repectively. The corresponding displacement components due to the

boundary tractions of Eq. (23) - (24) are given by the Duhamel integrals
t

(rt) (r) vn  (r,t-r)] dr n > 1 (31)

'& (rt) o ), (rt d n > 0 (33)

St
vo(r)*t). %~i (,) vo (r,t.,) dT 0. (33)
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The total radial displacement w(rOt) of a point in the medium,

which is behind the incoming shock wave front is obtained by superimposing

the components given by Eq. (6) And Eq. (31) - (33):

w(r,O,t) - -- [cos (t-t + wo(r,t) +Z.n(r,t) + vn(r,t) cos no (34) A
pcp 2 [.

In a similar me-nner, expressione for v(rOt), -(rG,t) and 4(r,a,t)

can be obtained by superposition of the free field quantities and those

produced by the application of the corrective boundary tractions to the

surface of the cavity, r - a t

v(r,O,t) .-i(sin eJ( t-t*) + _ ' (r,t) + .(r,t). sin nO (35)

(r,O,t) *--A~ cos 0 + 'W(r,t) + w (r,t) + -fn(r,t) cos nO (36)
n-i

4(rO,t) s - sin -- .4 n(rt) + vn(r,t) vin no (37)
ep n-i

E, (34) - (37) ere gven in a for,_ -tahble for th"ce "" in: in the

medium over which the shock wave has already passed and which have

already received signals from the reflected and the radiated waves

originating at the cavity boundary. For other situations, the free field

and corrective traction cooponents must be superimposed with appropriate

delay times, relating to the arrival of the various waves at the point

under consideration.
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III. AUXILIARY PROBLEM - Displacements and Velocities Produced by the Boundary

Tractions arr: vu(t) coo nO and a r8 ' koU(t) sin nO (Figure (4)].

The equation of motion for the linearly elastic medium Is given by:
v-_ + (x + P)vv.u - pi, (38)

vhere for the plane strain problem, the displacement u contains two components

u = w(rOt)kr + v(r,O,t)ke (39)

Defining two potential functions, O(r,8,t) and *(r,G,t) such that

w(r,O,t) - Or + i *0 (4o)

v(r,1,t) - - (4i)

and substituting Equations (40) - (41) into Equation (38), the functions

and ? satisfy the following wave equations.

2 2c p7 - 0 (42)

c ' (43)

where

are the velooities of propagation of dilatational and shear waves respec-

tively in the infinite elastic medium.

A transform with respect to time is applied.

? 0 U f(r,0,t)e'i dt (45)

2"'-i7
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Writing the trsnaformed potentials 0and I as:

0(r, e, A) "0(r, il)cosnO (47)

the transformed wave equatione become

+= n 2  2=
+ + (f, .)1( --W- 0 (49)

Orr r r 2

*rr + +, Jteon (3

r7 r . Y - 0 o~n (50 )

c 8  r

and tho solutions for divergent vaves are given by the expressions

(r 0, n)-AH(2) (fl)cos3n0 (51)

*(r, 0, n)- H(2) (A),inno (52)

n( ) ' n c

The coefficients A. and B n e obtained from the boundary conditiono atthe cavity boundary r -a:

arr oru(t)coone (53)

Cr e ,- % k )sinnq (514)

7ne stresses r,.. and aeare first expressed in terms of th~e potea..

tia. functions 0 and *

r2 r
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Trnsforing Duations (55)-(56) and substituting Equations (5l)-(52)

into the tranwformed equations, the constants An and Bi my be computed.

Te trnsformd potential Anctions becoe()

n .(2) (.2) coo no (57)

ieber.
0 2 ( -D(n+ )32 2)(:) n o(9

2
B - [.(n + 1) + ej H!

Oe s a I as

D - 2n(a + 1) H(2)(t) " 2nt Hn2' (2 ) (6)

E 2a(n +1) H2 (!R E).2% _2 t~) (62)
n @ ast%1 a

aa

p

The transformed displacements are obtained by substituting Equations

(57)-(58) into the trwsnformed Equations (40)-(01).

Ca Pn(9, r)co nO
0 -) (e, +)DE (63)

(FB Dg)(614)

where

%(t, r) - [B + kE_ n "H(2)qg) + E2)(FA)]
r ~n a na r n a a

(65)

(Th ie following results ae given for the speoific case of ? a g, i.e.

for a v a3ae of Poisson's ratio v - 1/4.



and

[B(t,r). ( + kE ]E- n, H(2)(7)] + LD - kF n - (2)y% +rc a nl ca

(66)

Similarly, using the tranform for the derivative with respect to time of

the displacement components w and v, the transforms of the velocity

componnts become

an Pnft, r) coo no

n (M + D) (67)

qn(r ) r) in nO (66)

The radial displacement and velocity components) vn and may be

evaluated from the inversion Integral, Equation (46), 1.e.

00-tyiIto t/a

v (r, 0, t) -E P_(f, r)e dt cosng (69)
-w.-17

and and n~r O,.). .7 l  (  
r)e lpt/

"(r, 0, t' f (FB + T' ) dt coo nO (70)

-0-17

The correspionding inversion integrals for vn and ra may be derived by re-

placing the quantity Fn (C, r) coB nO with Qn(t, r) sin nO in Equations

(69)-(70) respectively.

The in version integrals for the velocity components wn and 4. at the

boundary of the cavity, r * a, will be evaluated in Section (IV).
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IV. INVERSION OF EQUATIONS FOR THE RADIAL ASD TANOGMIAL VELOCITY COMPONENTS,

4n AD Vn AT TF C.AVITY BCOWDARY, r -a.

The radial velocity rn at r a a is evaluated by inverting the integral

ct

Wn(a,6,thL 1 O-.i iPn~aU eJ aot+n SJ di (71)ccep co o' e no, - [FB + FE ]

where

Pn(a,t) - {CB + h~j I~ni,(2) (t) + tH (2) (t) _ ED - kF] n()(p- (72)

All computations were made using a value of Polsson's Ratio v - 1/4; this

corresponds physically to a graite rock medium. For v n 1/4, the relation

Cp - F c (73)

exists between the di.atational and shear wave velocities and thic will

be introduced into Equation (72) in the following transform inversion.

The singularities or the integrana of Equation (71) axe a branch

point at the origin t x 0p and simple poles defined by the roots of the

equation PB + DE - 0:

4[- t22 n -2. i)H2 (,)H(2) (1370 + 3C2 (4n(n + 1) - R 2)H(2)(t) H(2)(1-3 t) +

-6 4 ( n2) (2)(t)H(2) r3 (2) r
+ n-l n + " l

(74)

Consider the contour ABCDEF shown in Figure ( 5 ) where the arcs AB and

EF are of infinite radius and the lines BC and DE are branch cats. By the

residue theorem and Jordan's lemma, the integral of Equation (71) may be
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evaluated an

P n D,')t / dt f a)"y/ dt + 2"iflj (75)
A BDEI

vhem5 Rj is the sum of the residues of the poles defined by Equation (74)

of the pertinent branch of the integrond.

The contribution to the velocity component n of the integration Ovor

the path CD in equal to zero. Mds value represents the asymptotic value

of 4. for very long times.

The contribution of the integr.tle, over the branch cuts BO and DE

leads to a brunch integral vhich must be evaluated numerically. Letting

- ei/2 ; .Y 3x/2 (76)

and using tho recurrence rolation,(*)

(71)
H(2)(.-2*i) . .2j(9) - H(l)(t)

the branch Integral becomes:

EN 1-)~ f N2 - a tl dy '(78)
0 -?fl

vhere

22(n + 1)2Y2 (.211(y) + K2(y)3 +

3y '2 n2(n + 1)2 + 12n(n + l)y 2 + Y 11'M 3 Y) + '2(1WY)l +

N1.Y [ n2 2 1 (y)] +6y 1 n 1 2 (ITy) + 4.2.(47y)] +

. 2,, In (y)I (,) - 3 (.)K(,)3 -

- 242(

- W Y31n~n+ 1 + y ][ K 3 I~f OI T - Kn.:(Jj3y)K%(F 01 (79)

(*) "A Treatise on the Theory of Bessel Functiona", by G.N. Watson, Cambridge
University Proes 1952, Pg. 75,
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.6n(n + V 2n(n + i) + 3y 2 lA (y) + , 2(Y)l

N2  6(n + i)y 2 (2n(: + 3)+ 3y2,(.2?(

N".2' t 3¢(y) +, 4 (€)J

+ 36ny ( A2 1 (63 ) + . (r )1

- 3 C3? + 2(n + 1)23 n'.i-()In(y) - Kn-.(y)Kk(y))

- 65-n 3 13y2 
+ 2(n + 1)21 Cnn.l(A4 y)In('3 y) - n.l( 3Y)Kn(/3y)) (80)

and where Dn ic given by eq. (81), Pg. 242.

Equation (78) ean be ovalugted nuwricalay for values of the timo
a t

pcxam.eter a

The contributions from the poles which are roots of Equation

(74) may be evaluated. by the Residue Theorem:

R a 21d Rj

where

21- (1 - )2 H(2)(t ) H (2) (J3 C )a-i 3 nn-i

- (2) n-i j+2.3-n(nk - 1)9 a l() ( 1) (r3 g )  ic t

- + n n-1 j a

- 3a(I + k)E2 H(2)(t ),(a)(I3 E )
2xilt j ___________________- 

(82)

I n-I j n-1 ' "
+2[30(3n -2) + 4n(l - 2)Ej]H(2)C 3 )H(2)(I F3 )

I ( 2 
- 2) 2 ( - g(2) (

+,(8 E %2 + Uno (4nH - 3 )H(2t H)0 t
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The velocity component in then beccmeo:

- I R] cos nO (83)
ccp

In a similar manner, the tangential velocity v at r is valuated

by inverting the integral c t

4 0, ' i n(a E)e

ac sin nF rj f (814)

where

%(a, ) rg(2)(t)] + ID - k]{-, ( ) ( -  ) + 5g
a E 4 -n es . C a I  an G

A-aLn, using the relation V = 1/4, i.e., cl= cn , the singularities

of the integrand of Equation (84) arc a branch point at the origin = 0,

and simple poles defined by the roots of the equation FB + DE a 0,

Equation (74). The inteeral io inverted over the contour shown in Pit-

ure ( P). Proceeding as in the inversion for w the tangential velocity

component '.(a, 0, t) can be evaluated from the relation

ai + ] sin no (86)

The branch integral Y is given by

- £I-kN] c ty

( ')n f..1..-..JLe a dy (87)

wher-e

.6n(n + 1)y +2n(n + 1) +n 3l2  A [ K 2
l) + 1(y)

-6n(n + 1)y2E2n(n + 1)+ 3V2]ji 2 i2 (,/3.Y) + (/F3 - 12ny 1 (A:[ (y) + .(j

N .36DY 4  1 2(5 Y) + lr )

+ 6ny3[2(n + 1)2 + 3y21],2  .(y)In(y) - K.(y)Kn(y)]

6 63 t2(n + 3) 4 ~Y)In (a y) *y)K n(N"Y)'

(88)
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-fy[n (n + 1)" + 12n(n + e32 + 9y4 ][ (Y) (y)]

. 2 122 y.¢ n y y)

"4 4 2  
'

-12 112 -3 y [ ..€ .+ 4 ..( )

+ 1,n, ,C3 (n + 1) +3y 2 1(, 21 n(y) ( ) - K. .()Kiy (V)I

1+24F n2(n + l)y 3 [n 2 Inl(ry) I.(13y) - K.l(ry)K (/ y)]J (89)

and D is given by Equation (81). Equation (87) may be evaluated numericallyn c t

for values of the time parameter Pta

The contributions from the poles t J hich are roots of Equation (74)

may be evaluated by the Residue theorem:

T= 27di Ri

where

j n-l -

V [2n(n - ) + H()( )H(2 )(f- ,) ic t
3 3 n j n-1 P E

n n. I (j

- ) + - (90)

+ . 12r3t H2 ( ()1 F

+/- 16 (n2- +) 3 2(4n -3 t)) j,()(g ,(2),' (F3
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V, DISPLACEMENTS AND VELOCITIES PRODUCED BY THE BOUNDARY TRACTIONS arr U(t)

AND qr&i "0.
0

The dJ qplacement u for the case n = 0 has a radial cocmonent only

u - v0 (r,t) kr  (91a)

The coefficient w (r,t) is expressed in terms of a single potential function
0(r,t):

w0 (r,t) = r(r,t) (91b)

Proceeding as in Section(IV), the radial displacement wo and the radial

velocity We can be obtained from an inversion of the following interalo:
c t

=;i H (2)(g!) e - -

wo(r,t) . aa j I a (92)

c t
and t

- . 1f aw(2 )( ) (93).=.i 4r."0 ') =)  (),

The quantities w and We at the cavity boundary are evaluated by integrating

Eq. (92) - (93) with r . a over the contour ABCDEF, Figure(5). Proceeding

as in Section(IV), the velocity 0 is computed from the relation

o(a, t) 1
a = p ( + R) (94)

oc u

where the brannh integral I and the oum of tha reoiduos R aro givon bolow:



c tI-

e 2 d y 2e a2 ( 9 5 )Q) [2K1 (y) + 3yKo(Y)+ i I, (Y) . 3yo(y)] 2

C t

R. - e. (96)

13 2 j] H(1 1(t~ Ho 2(

The summation over J in Eq. (96) is carried out for all values of g

which lie the first and fourth quadrants and are roots of the equation

306(1 2)(1) - 2112)(t) -0. (97)



VI. DT'ERMINATION OV THE RIGID BODY MOTION GF THE CAVITY BOUNDARY [Fig. 6].

A portion of the total motion of the boundary of the cavity consists

of a rigid body translation in which the cavity maintains its shape and

translates in the direction of propagation of the incoming wave. This

rigid body motion can be extracted from the total motion of points on

the cavity boundary. Essentially, one must superimpose a portion of both

the n - 1 component of a Fourier expansion of the free field motion and

the n - 1 component of the motion produced by the corrective boundea-y,

tractions, ar a(t) cos , are - b (t) ain 0 (Eq.(23)].

Consider, for example, the determination of the velocity components,

and v, for the rigid body translation of the cavity. The free field

velocity components, , and 4f, Eq. (3)-(4) respectively, which are

produced at points on the cavity boundary, r = a, by the incoming plane

step shock wave are expanded into a Fourier series in 0:

d (t d.tf o
vfya,O,t) djw.. d fdn(t) Cos no (98)

n l

v(aO't) Zhf(t) sin no (99)
n ,l

where a(t)

df(t) - f(a,O) cos nO dO (100)

C(t)

hnf(t) -2 f(a,o) sin nO (101)

and Vf and ;f are given by Eq. (3)-(4).
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The velocity components f 1 and Vfl , corresponding to n - 1, can

be written in the following manner:

f -t +os 0 + r - Cos 0 (102)

f * ff f

vfl- 'sin 6 . sin 0 13

The cctfficient, [LI represento a deformational component of the
.f .f

velocities while the coefficient [.'----n represents the rigid body

velocity components. for the step shock wave under consideration

a 1 [M . sin mcosa)1 <L-[ io -c

t > 2a

j m - -incon m <2a

hi(t) _ >2 (105)
o t>2

In a similar manner, the velocities, 'r and C ) N produced by

the corrective boundary tractions or a al(t) Cos 0 and 0 r0 " b,(t) sin 0

can be ir¢rtten in the form:

(*) The quantitiea Vel (Ot) and ' c (0,t) can be evaluated from the formulas

in Section (IV).
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c1 (e,t) + dh(t) 0o6 [.t oa o [ ) -oo 0 (106)

rd (t) + hC(t)1 rdj(t) - hC(t)
(et). hC(t) sin L -2--in- -2 sin G (107)

where the terms containtg the quantities L 2 are the rigid

body components of the velocities.

The total rigid body velocity of points on the cavity boundary is

obtained by superposition of the rigid body couponents in Eq. (102)-(103)

and Eq. (106)-(107):

*(O,t) . d(t) cos 0 (108)

(O,t) - - d(t) sin e (109)

where

d f(t +dct)- h f(t) ct

d(t) [d(t +1 1 (t 2 1 - hilt'](lr

In a similar manner, results for the rigid body displacements and

accelerations can also be determined. The corresponding free field

f
expansion coefficients, d1 and h1 for the displacemento and accelerations

are given below:

Displacement coefficients

Vf(t) - df(t) coo 0 ; vl(t) U-(t) sin 0
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*here

f( . ( F 8 )ao - i t < 2a

Cpp

1s [ct t > 2a

-c L a  j €

Acceleration coe±"fielcenta :

d (t) CO o8 .; +t) - h t) sin 8

i where

hf(t) 4  (113)

cra [Ct t >2a

,f f f 2.n < -

a 2 -<a(

1(t) .42a

0 t > -

t La
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VII. NUMWICAL RESULTS AND CONCLUSIONS.

Numerical results are presented for the diuplacoment and velocity

components at various points on the cavity boundary r w a; these quanti-

ties are produced by a plane atop chock wave.

An in the case of the stress (19], it was found that the maximum

values of the displacement and velocity are not materially affected by

the es.xly-time contributions which come from the terms for which n Is larger

than 2, and consequently, the series in Sjuationa (34)-(37) may generally

be terminated after the n a 2erm ior computarional purposes.

Figures ((9-13)-(9-14)] show the displacement and velocity components,

w and for the locations 0 - OO and 0 - 900 on the bound ry of the cavity.

Figurco ((7)-(d)) of the Appendix chow the radial and tangential velocity

components w and 4 at the locations 0 - 00, 22.5O, 45OP 67.50, 90°, 135°

and 1800 on the cavity boundary.

The rigid body motions of the cavity under a step wave loading are

computed from Section (VI) amd the components from the free field and correc-

tive traction (n - 1) effects are shown in Figures [(9)-(10)] respectively.

The total rigid body displacements, velocities and accelerations are shown

in igure (V-15) og Scc~ion ,

The motions of points in the media which are produced by the step shock

wave may be used as influence coefficients to determine the corresponding

motions produced by a wave with a varying pressure-time history, For ex-

ample, denoting the radial component of the velocity produced at the bound-

ary by a step wave as s (0, t), the rudial velocity due to a wave with

the pressure-time history P(t) is easily computed from the iehmel integral

t

P p (0, 0 +.f ndo[),. (-dy
0

by numerical integration (See Figure(9).
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SHOCK WAl Wy 'I-SHOCK WAVE
VELOCITY=CpFRN

FIG.1 GEOMETRY OF PROBLEM

0 0V

rri GlZntcosne

Moo-_ _0 .re1Jbn(t) sinne

(0) (b)

FIG.2 BOUNDARY TRACTIONS
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.O7ren= kutt)sinflO
u(t)cosne

FIG.A AUXILIA~RY PROBLEM
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op 0

-v -d(t)sin 3re

T / ddt( 
t

wud~v / w. dsticosl

--- SHOCK FRONT

FI6.6 RIGID BODY MOTION OF CAVITY

NOTE:i THE QUANTITY d(t) IS INHERENTLY NEGATIVE.
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APPENDIX E

DETMINATION OF SHOCK SPECTRA FOR INSTALLATIONS IN CYLI1DRICAL CAVITIES

IN ELASTIC MEDIA.

I. Introduction.

The motion of points on the boundary of a cavity subjected to shock

waves, impart accelerations to installations which are located within the

tunnel and are attached to these points. In many cases, these installa-

tions will be quite chock sensitive and consequently, the- may require

special mountings to absorb the shock effacte produced by the pressure waves.

In order to optimalize the design of shock mounted equipment, shock

spectra are frequently utilized. Two types of spectra are particuLarly

useful in the present problem: 1) Spcctra for the peak relative displace-

ment of the installation in the cavity, with respect to the motion of the

points on the cavity boundary to which it is attached; 2) Spectra for

the peak absolute acceleration which is imparted to the shock mounted in-

stallation in the 1vlty. The latter g ' era--- data ftich is required

for the actual design of the installation to be shock mounted, namely the

peak accelerations to which it will be subjected; the former spectra give

clearance requirements for the mounting of the installation within the

cavity,

The theoretical formulation of the problem of the determination of

shock spectra of the type described will be presented in this Appendix for

waves which carry decaying pressure-time histories as given by Brode (351:
at )tP~ )DIP. + 13 + 14.7 (lb./An )  (1)

F~t YU
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T
lie quantity P 08 thO peak overpressure In the shock vave, and the

constants DP, A, m, B and 0 are defined in (35]. The displacements of

points on the cavity boundary for waves with the decaying pressure-time

history are obt-ained the correspondine dispacemento due to waves

with step pressures by Duhamel integrals (Section (9)]. The spectra 7

curves for typical cases are shown in Anction (10) of the min report.

It is of interest to note that heretofore, shock spectra which were

used in the design of underground installations were computed from free

field input preosures, and the effects of the diffraction of the shock

wave by the cavity were neglected. The spectra developed in this Appendix

include the diffraction effects; consequently they are more appropriate

and should supersede the free field spectra. It will be noted that for

shock mounted equipment with high frequency components, the free field

spectra are quite erroneous and the more accurate spectra presented in

Section (10) should be used.

II. General Procedure.

Consider mn ±i talLtlcn -.:hch is shock -munted to tha wm11n of a

cylindrical cavity in an elastic medium. The problem can be idealized

by considering a linear oscillator consisting of a concentrated mass M

on a linear spring of constant K. The oscillator is attached to a support

which is subjected to a motion equal in magnitude to the displacement of

the point or points on the cavity boundary at which the mass is attached

[Figaro (1)]. Let the displacement of the support and of the mass, both

relative to a fixed datum, be U(t) and Y(t) respectively; the relative

motion of the mass M with respect to the support is Y(t) - U(t). The
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equation of motion of the oscillator is:

MY+ K [Y-U] O (2)

Defining the frequency w of the oscillator,

C .JA (3)
Equation (1) is written as

Y+wyuWU (4)

For initial rest conditions, i.e. Y(O) = 0 and Y(O) = 0, the solution

of Equation (4) is given by the integral.

t

7(t) - raU(r) sinwat - r)dr (5)
0

Shock spectra showing the peak absolute acceleration and the peak relative

displacement (relative to the moving support) as a function of the frequency

w of the oscillator are required. For a given value of w, the peak

acceleration of the mass

-F( U) imu (6)

and the peak relative displacement

S maxlimum(7

are evaluated.

For this study, Brode pressure curves produced at different locations

by a hypothetical 20 !1.T. surface burst were considercd, and the result-

ing displacements, U(t) at various points, 0 = 0., on the cavity boundary

were determined. There were introduced as forcing functions into the right

hand side of Equation (4), and for varioun values of w, the acceleration

and displacement responses, given by Equation (6) and (7) were computed

and plotted as a function of w. These shock spectra are presented in
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I

Figur (10-2)-(1o- .

The computations wcre made using an IBM 704 computer. The anal~bical

formullation of the problem in detail Is given In Section II! of this

Appendix.

III. Analyical Formulation of the Problem.

The determination of acceleration and displacement shock spectra may

be formulated analytically in two steps. First) the displacement U(t)

produced at a point 0 on the cavity boundary by a shock wave vith a

Brode preosure decay must be evaluated. Soecondly, the valuoc of U(t)

are substituted as input functions into the right hand oide of Equation

(4); the oquation is then integrated and the exprosaiono for the mxi-

mum acceleration, Equation (6), and relative displacement, Equation (7)

are evaluated for each value of w. The analytical formulation of the

problem follows:

a) Etvaluation of U(t), produced at a point, 0 = Oil of the boundary

of the cavity by a shock wave with a Brodo pressure decay.

Expressions for the displacement, U(t) produced at a point, 0 - Oil

on the cvity boundary by a stop shock wave (P wave) are eiven in Appendix

D.( *). The corresponding displacement curve, U(t), produced by a wave ",

carrying a pressure vith a Brode decay, may be evaluated by means of the

Duhaiel integral
t

'U(t) ./ p(.) ('t -0 d, (8)

0

See Appendix (D), Eq. (34)( 35). I
i
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where P() is given by FT=.Itior. (I). To perform this integration, ninth

order polynomal curves are fitted to the function U(t). Due to the

nature of the U(t) curve, a single polynomial fit is only valid ovtr a

certain region of the crve, and hence several po3--nc=4nlo arc used, each

being valid in a certain regicn. Using the notation below, the displacement
(ri) (r "((9)

U (T) - % 9
n-O

where

-- m (10)

is valid in the rcgion R uhich is bounded by ri and r +

Region R: rI _5 T < ri+ , U (T). (115
i = 0, 1 2....

Substituting Equation (9) into Equation (8), the displacement U (T)

which is valid in the region R, r, 5 T < ri+l, is obtained by integra-

tion. This quantity is written in the form

_(A, ri) (B, ri) (r )
_(A, ri)

The expression U (T) is given by the expression

.(A, r) ( (A, ri) (T) (13)

n=O

where

U (A, r Ar [(aJ1) (r ) (A, r) + BrIYA)(T)U ~ ~~~ (T - A °a n)E

+(A, r ) (15)1

S r (T) - (-l)" ' [a - a(t- T)] v(A)(r + f e-.(T - r,)
E n (

F(A)(T) - (.l)n-l~n - c,(I - T)]V(A)(T 5 +n 16
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VA ) (T) (.-)m. n. (7) 1
n=n I

-..

and the constants A, a. and P are given in t.rms of the parameters of the

Broda curves (See Equation (1)1,

a~ eD

The expression for U(B, ri)(T) is obtained by substituting B for A

ad 0 for a in Equation (13)-(18), where

Ba~ (19)

The term E(r)(T) represents the displacement duo to the atmospheric

preasure torm in Equation (1) and is given by the relation
(rj)

r (T) . 1,4.7- a. T" (20)

n=O

b) Integration of Equation (4) and the evaluation of the rmximum accelora-

tion [Equation (6)] and the meximun relative displacement [Equation (7)].

Once the displacement U(T) is evaluated) the displacmnt Y(T) is ob-

tained by !ztagratir. Eya- o (4~) for aptclrv1.eof the frequftncy

w. In term of the non-dimensional variable T, Equation (4) boco n a

dT

where

M -- (22)
c

Tue couputod values of Y(T) are then used to determine the maixlml acce.era-

tion, Equation (6) and tho m=Axmum relative displac=ent, Equation ().
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Generally , Lquation (21) can easily be integrated numerically by a

forward step integration in time. 1e-tting '9" be the interval of the uon-

dimensional time steps, and usin8 the No ,rov procedure for second

order differential equations, a recurrence foxmula for Y(T + k) is obtained:

-2 + 124 "lOkc,-
Y(T + Qc u k2 tu(T - Qc + ioiiQT) + U(T + kc)] 2±-2~- ]Y(T) (-k

12+k%2 12 +k w
(23)

Equation (23) allows the determination of the displacement Y(T.+ ) in

terms of the previously computed values of Y at the tvo previous tIme

steps, T and T - k. When the integration is started from the initial time,

T - 0, the starting formula

Y(o) - (24)

Y-k) -k e U(I) + 5U(O)] (25)
12+k w

must be used.

Stability considerations(*) for the numerical solution of Equation (21)

by thr iNomroy rccurrenc o ifa Eqatio (23), tha-t thO ti-M

step k satisfy the condition

IC < (26)

A further requirement for accuracy of the solution results in the use of a

substantially reduced value of "k" from that of Equation (26). In the

numerical computations reported in Section (10), a value of k - 9 as

used in each ease.

(*) See, 1 mercal Methods in Enagineering, by 1. 0. Salvadori and M. L.

B& , Prentice-Mll, Second Printing, 1955, Page 118 ff.
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For high frequency oscillatoro In vhich the value of ; Io large, it f
becomee imx1 atical to uoe a nw-woricaX procedure because of the ail

values ot the spacing "k" that ae required. Conoequently, for use with I
high frequency ovoillators, an analytical expression for Y(T), valid iu

the rsana, 0 < T < 2, has been developed fr&m the integral in Equation (5).

Consider the displacement U(T) in the region ri - 0, correoponding

to the bounds 0 < T < 2. Prri the Equation (12),

.U(O)(T) . b(A, o)(T) + U(, o)(T) + Z(o)(T) (27)

Substituting Equation (27) into Equation (5) and performing the integration, the

d&iplacement Y(o)(T) valid in the region 0 < T < 2, is obtained:

Y(o)(T) * Y(A, o)(T) . .(B, 0)(T) -1 Y(Z, 0)(T) (28)

vhere

y(A, o)(T) . y(A, o)(T) (29)

Y(.( 0)(T )  Y ( Io)(T) (30) -

n=i
(Z, 0)(T) 14.7 6 Y(z, 0)(T) (31)

A-O
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jThe function Y(A, 0)(T ) ig given by

1 (A' 0)(T) - , (,) S (n -i) (bl)' +

a- % k J+2

("" * ecnj
+ (.l) 2 ( T)' --.I  +

I- fk-J+2|

,o o, kj koddl ,_ +2 k-

Jun k-J+3 koJ+3
v k even k dk od

e r i n o k ai n+ b n-1 B Ie v

[ n (k-+2 I I k-+2
Sk,n evenj k,n odd l (33

I(32)

The ~ ~ B e0r-ln o )(T !a obtainedl by aubosItuting B for A

q~ ~ ~ h presion foe e %ptatosfrdtrii h hc pcr o

an e for a in Equation (i2). The coefficients B end in ter of the
a Brodle parameters are given by Equations (!9)-(20).

The expression for y(z, 0)(T ) is given by the following expressions:

Ia

) n 11 k n+1 k-i k

IJ

Ikncej " dl (33)
Sin :performing the Computations for determining the shock spectra for

acceleration and relative dispxlaceent shown in Section (10) of the man

!
!

I

1
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report) it was found advputageous to use the analytical expression for

Y(T) (Equation (3 )) to determine Y(TD) in tho rango 0 <T 42, even

for the internediate range of the frequency ;. The recurrence formula,

F.uation (23), was then used to prolong the solution numerically beyond

the range T - 2. In such cases, the numerical integration was started

with the formulas

Y(2) - Y2 ; Y(2 - k) - Y2-k (3-

whore Y2 und Y2-k were computed from Equation (28).

The ditp,.acements U(T) and Y(T) were compated using an IBM 704

computer. Once these displacements are known, the acceleration and -

relative displacement time histories can be determined from Equations (6)

and (7) respectively. In each ease, the maximum value of the quwntity is

evaluated. This procedure is repeated over the entire range of the

oscillator frequency w. The curves of maxim= acceleration and maximum

relative displacement versus the frequency w are the required shock

spectra. .1

IV. Determination of the "Free Field" Shock Spectra for CC!parison Purposes.

The shock spectra developed in Parts (I-Ill) of Appendix (E) include

the effects due to the diffraction of the shock wave by the cavity. It

is of interest to compare these spectra vith the "free field" shock spectra i
which heretofore have been used in the design of underground installations.

These "free field" spectra are computed-fro the effects of the free field

input pressures only; all diffraction effects due to the cylindrical cavity I
are neglected. Hence, essentially the "free field" ;opectra are developed 1

I
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from the preaurcia that a gno placed at a point in the mediun with no

tunnel. vould read. Analytical exprooeicnio for the dctimrion of the

"free field" acceleration and pnlative dioplacmont opectra aro developed

in this Section.

Let U(t) be the displacement of a point in the medium produced by

a plane step shock wave with a constant pressure P and a velocity of

propagation eap . Tho displacement U(t) is measured in the direction of

propagation of the atop wave.

The Varticle velocity at the point, produced by the step wave

becomes:

U~t (35)

The displacement curve v) i,&w c by a wwye urying a pressure

with a Brode decay, [Equation (1)) may be evaluated by means of the

Duh e integral or Equation (8). Substituting Equations (35) and Equa-

tion (i) into Equation (8) and integratinr the dioplar,,aent (T) Is

obtained:

L -l/a)(1 - e') ,TaV J +
+ (IAa 1/0)( - e-OT) +Th-OT (36)

'where the non-dimensional time T is given by

T oat( -2
a

Thet coefficients A, B, a, 0 and p, are given by Equations (18)-(29).
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The displacewnt of the oscilLitcr, Y(T) is obtained by aubstitutins

Equation (36) Into Equation (5) and integrating:

a -12 -aT -_ -2
Y(T) - - M 131IGT + -) coca] +

P pc ?

+ e'T p +2 +2 2E c

T + Z2a + Z2~ (C,2 + e) 2

Ba r03r-2e.5 -2 ccJ

en c o he2 + 2erc 2oF2D n h ollr
(D2 +-2 2)

(37)

I V. ~~~ucrcn Rcul

Using the values of d Y(T), the acceleration anD relative dis-

placement time histories can be determined from Equations (6) and (7) r--

pectively. Frequency spectra for the acceleration and the relative displace-

ment of the oscillator mass may then be constructed following the procedure

in Section (XII) of this Appendix.

V. Nllurcric.. Recsults.

Acceleration sand relative displacement shock spectra bave been obtained

for cavities w~hich are subjected to P w~aves with Erode pressur,- decays, from

a 20 14T sur.Qace burst. Spectra for the rigid body motion (average notion)

of the cavity are presented in Sectiou (10) for waves with PO = 6500 psi

(Figure (10-2)] and Po - 2000 psi [Figure (10-3)]. , addit.on, spectra

based on the motion of the cavity boundary at the points 0 - 00 and 0e



-281-

U4e Drenoated , Figure (3.Q0-4) 8ln4 (10-5) rcspectivelyp for P0 o 0 pi.

For ceap rivon puarposes, tho 'Irrae field" teooleration speotrum to

also given in each case. I'M reader is referred to Sec-tion (10) for a dis-

cuUDo0II oi %be results and a cnaribon of the spectra deve1opul In the

Appeax6,hloh ino).u& diffractiona.ffeots).!ith the f-ree field speotra.
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Y(t)

~(t) Y-U(RELATIVE DISPLACEMENT)

FIXED DATUM M

K

F FIG. I
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AW-1d.Ax F

ELSTIC P O."MTIES OF GuANITES UNDER STATIC LOADINO(*)

I. 1FOOMM.

Compression tests were performed on two different dmn.stia granites

of ntructurna and architectural quality to determine typic-l stress-strain

diagrams and elastic constants for these materials.
Specimens having the shape of parallelepipeds of N proximately th Me

inches height and oee square inch cross-sectional area were cut using a

diamond rock saw. Electrical resistance strain gages, [SR-A AX-5],

which measure both longitudinal and transverse strains were affixed to

the specimens. The specimens were loaded statically cn a Bald-°, 11niversal

testing machine.

Table (1) presents the d-tscription, ceposition and elastic proper-

ties of the materials used as listed by the U. 8. Bwvau of Standards.
(** )

Talhle (2) shows the dfmenslons, conditions of loading and test resultu for

the specimens tested. Figure (M)-(3) show the stress-strain diagrams

which were obtained f.om the tests.

II. Discussion of Test Results.

It appears from Tables 1 and 2 that the tested specimens failed at

lower loads than expected. However, the Bureau of Standards does not list

(*) The tests were perormed by Dr. Robert Heller, Assistant Professor of

Civil Engineering, Columbia University.

(**) See, D. W. Kassler, H, i ney, W. H. Sligh: "National L.axau of

Standar ", Paper No. R. . 320, J. of Research, V. 25, .940, PAio 161.20;.
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uore than one of two test results for each material and consequently a

statistical distribution of properties for a particular typ2 of granite

cannot be deduced from the tabulation. The test results for each material

are remarkably well duplicated since the specimens were all cut from one

large block and consequently have nearly uniform properties. Th ordinary

grey granite has a higher compressive strength, but somcahat lower average

modulus of elasticity than the pink one. Grain structure, in evidence in

the grey grnite, heA no apparent effect thou. on one specimen the load

waa applied perpendicular and on tvo others poaallol to the grain. The

pink granite which does not exhibit any particular grain structure had a

high elastic modulus because of a greater quartz content.

All specimens failed in tranaver"ac tension forming columnar fibers.

The shape of the stretis-Btulin diagrams Is similar to those obtained by

other investigators.
(* )

Poiason'd ratio and a shear modulus may be computed, and Poiscon's

ratio is found, to be variable for all specimens. A typical curve of

Poisson's ratio is shown in Figure (1). Somo date indicating the loading

rate sensitivity for these materials is presentea by Wuerker.(*) The

loading rate: In the present te~tz .'mc hcld to prx'tel 5000 lb/mino

For higher rates of loading, the modulus of elasticity Increases con-

siderebln, but no appreciable Increase In compressive strength is shown.

Hydrostatic pressure coined with axial loading has alr been used by

some investigators where work could be surveyed in the future to determine

the necesslty nd feesibility of future tests.

(*) See, R. 0. Werker, Petroleum Branch, AIM, Dec. 1956 (D552W9).
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